

#### **Government of South Australia**

South Australian Arid Lands Natural Resources Management Board







# June 2011

South Australian Arid Lands Natural Resources Management Board An expansion of Dusky Hopping Mouse *Notomyus fuscus* distribution inside the Dog Fence in northern South Australia

**Richard Southgate & Katherine Moseby** 

# DISCLAIMER

The South Australian Arid Lands Natural Resources Management Board, and its employees do not warrant or make any representation regarding the use, or results of use of the information contained herein as to its correctness, accuracy, reliability, currency or otherwise. The South Australian Arid Lands Natural Resources Management Board and its employees expressly disclaim all liability or responsibility to any person using the information or advice.

© South Australian Arid Lands Natural Resources Management Board 2011

This work is copyright. Apart from any use permitted under the Copyright Act 1968 (Commonwealth), no part may be reproduced by any process without prior written permission obtained from the South Australian Arid Lands Natural Resources Management Board. Requests and enquiries concerning reproduction and rights should be directed to the General Manager, South Australian Arid Lands Natural Resources Management Board Railway Station Building, PO Box 2227, Port Augusta, SA, 5700

# **Table of Contents**

| DISCLAIMER                                                     | 1  |
|----------------------------------------------------------------|----|
| Table of Contents                                              |    |
|                                                                |    |
| Landholder summary                                             |    |
| Executive Summary                                              |    |
| Recommendations                                                | 5  |
| Introduction                                                   | 6  |
| Methods                                                        | 7  |
| Results                                                        | 10 |
| Trapping and spotlighting                                      | 10 |
| Track-based monitoring                                         |    |
| Other native species                                           |    |
| Predators                                                      | 21 |
| Introduced herbivores                                          |    |
| Discussion                                                     | 25 |
| Distribution and abundance of <i>N. fuscus</i>                 | 25 |
| Habitats associated with the occurrence of <i>N. fuscus</i>    | 25 |
| Introduced and native species associated with <i>N. fuscus</i> | 26 |
| Biodiversity Strategy Actions                                  |    |
| Recommendations                                                |    |
| Acknowledgements                                               |    |
| References                                                     |    |
|                                                                |    |

/ m /) \* a \* m a a \* \* \* a / m /) \* a \*



# Landholder summary

The dusky hopping mouse is a small native rodent which inhabits sandy areas in the South Australian pastoral zone. Numbers have significantly declined over the past 200 years probably due in part to the introduction of feral cats and foxes. Rabbits and domestic stock are also thought to reduce plant cover lowering food resources for the dusky hopping mice which feeds mainly on seed and plant material. The Department for Environment and Natural Resources has been monitoring key populations of the dusky hopping mice since 1993 and found their numbers fluctuate depending on seasonal conditions. After large rainfall events, hopping mice can breed rapidly, building up in numbers and dispersing out into surrounding sandy areas. During these good seasons dusky hopping mice can be relatively easy to find, leading many people to believe they are a common species rather than one of our most threatened mammals. During dry times they are only found in a few core areas in the Strzelecki desert region north of the dog fence. During these dry times populations are very small and vulnerable to extinction through low food resources and predation from cats and foxes. High grazing pressure from rabbits or stock during these dry times may further reduce food and plant cover making them more susceptible to local extinction. Dusky hopping mice have disappeared from many of these key areas so the remaining refugia areas are vital for securing the long term conservation of this species.

The introduction of calicivirus in 1995 drastically reduced rabbit numbers in many areas of the pastoral zone and is thought to have improved life for this native rodent. There are now less predators and more plant cover in many areas where dusky hopping mice are found. The recent excellent rainfall conditions have also helped the species to breed up and disperse across large areas of the pastoral zone. This study was conducted to determine how far dusky hopping mice have spread and how abundant they are. When conditions become dry we can see if the dusky hopping mice contract back to known key areas or establish new ones. By understanding what makes these key areas special we can hopefully determine if any management actions are needed to prevent extinction and return this species to its former distribution.

We visited 14 pastoral stations situated south of the dog fence during May 2011 and looked for sign of dusky hopping mice. We used a number of techniques including spotlighting, trapping and searching for hopping mice tracks and burrows. Hopping mice were recorded on the western, southern and southeastern side of Lake Frome as far south as Wirrealpa, Curnamona, Kalabity and Boolcoomata Stations, and near Cockburn. To the northwest of Lake Frome, sign extended from Moolawatana to Muloorina Stations including Mundowdna. Hopping mice were found in sandy areas such as creeklines, sand dunes and sandy rises on gibber plains. Sign was most abundant in northern areas close to the dog fence with less dusky hopping mice in southern areas. More hopping mice were recorded in areas of continuous dune systems with less in patches of isolated dunes. Despite the good conditions, rabbit numbers were quite low and grass seed was plentiful. Trapping at Wooltana recorded the highest density of dusky hopping mice per hectare (10) since trapping records began in South Australia in 1993.

Although we don't yet know what detailed actions are needed to conserve the dusky hopping mouse we can make broad management suggestions that will benefit the species. Increasing the number of key refugia areas is needed to minimize the risk of extinction. This can be done in a number of ways:

- by maintaining good vegetation cover, particularly of grasses. This will help both stabilize the sand dunes where they live and provide hopping mice with food. This is particularly important during droughts when hopping mice populations are low. Stable sand dunes are needed to enable hopping mice to build their permanent burrow systems.
- by reducing rabbit abundance through ripping warrens or deliberately releasing the rabbit calicivirus at key times (usually during autumn before young rabbits are present). This will reduce competition for food and lower predator numbers.
- by controlling foxes and cats. This will also help reduce pressure from predation. Control could include long term sustained fox baiting programs or encouraging kangaroo shooters to shoot any cats or foxes encountered during kangaroo harvesting.



• Finally, reporting any sightings of hopping mice tracks or forwarding any dead specimens to Reece Pedler at DENR (phone 86711083), particularly as conditions become dry. This will help us determine which management practices are working and inform future decision making.

We hope to resample sites during dry conditions to locate key areas and understand what makes these refugia areas special. We would like to thank all the pastoralists who assisted with this study through providing specimens, allowing property access, sharing their knowledge and assisting with surveys. By working together we hope to ensure the dusky hopping mouse survives in the South Australian arid zone well into the future. If you are interested in more information on the dusky hopping mouse or the management practices that can help conserve it please contact your SAAL NRM board office in Pt Augusta.



# **Executive Summary**

A survey was conducted during May 2011 to investigate the distribution of the dusky hopping mouse *Notomys fuscus* in northern eastern South Australia south of the Dog Fence. The survey used spotlighting, track-based monitoring and trapping to determine the current distribution and abundance of the species in this region. Past surveys have recorded dusky hopping mice from sandy deserts in the north east of South Australia (Strzelecki and Tirari Deserts) with only scattered records from arid areas south of the Dog Fence. The report briefly discusses the expansion of *N. fuscus* range in response to the rabbit calicvirus and the period of exceptional rainfall beginning in 2010 following several years of drought.

The survey found *N. fuscus* sign on the western, southern and southeastern side of Lake Frome extending to Wirrealpa, Curnamona, Kalabity and Boolcoomata Stations and near Cockburn in the south. Sign extended to a southerly latitude of around 32° S. To the northwest of Lake Frome, sign extended from Moolawatana to Muloorina Stations including Mundowdna. A series of voucher specimens were collected during the survey or supplied by pastoralists (from animals found dead) to verify the identity of *N. fuscus*. This extends the previously known distribution of *N. fuscus* south of the Dog Fence by over 70 kms. Sign was more abundant close to the dog fence and diminished further to the south. Trapping and the use of track-based monitoring provided an opportunity to collect information on introduced and native species associated with the occurrence of N. fuscus. There was no obvious negative association at the scale of investigation with the distribution of introduced predators or herbivores. A southward extension in range was recorded for the crest-tailed mulgara (or Ampurta), Dasycercus cristicauda the long- haired rat Rattus villosissimus and the sandy inland mouse Pseudomys hermannsburgensis. The introduced house mouse Mus musculus was extremely abundant at all trap sites. Range extensions of native rodents are associated with above average rainfall recorded over the last 12-24 months and are expected to contract when conditions become dry. Resampling of track and trap sites during dry conditions may allow the influence of calcivirus and rainfall to be differentiated.

## Recommendations

- 1. Resample monitoring sites during dry conditions to determine the following:
  - whether the recent range extension of *N. fuscus* is sustained
  - the location of any key refugia sites south of the dog fence
  - the strength of association between habitat characteristics (eg. type, size of sandy patch, distance from continuous sandy habitat) and resilience of *N. fuscus* populations.
  - the strength of association between predator abundance and abundance of *N. fuscus* during periods of nutritional stress.
- 2. Compare hopping mouse abundance and competitor/predator levels in continuous sand dunes north and immediately south of the dog fence. This will improve our understanding of why *N. fuscus* is rarely recorded south of the dog fence during dry conditions. This action could include comparing track plots and trap grids on either side of the fence.
- 3. Determine the influence of rabbit and stock levels on *N.fuscus* occupancy and abundance through the erection of rabbit/stock proof exclosures and resampling track plots when rabbit abundance is high.



## Introduction

This document reports on a survey conducted in South Australia to define the southerly distribution of the dusky hopping mouse *N. fuscus* in a study region extending from the Barrier Hwy in the southeast to Lake Eyre South in the northwest. *Notomys fuscus* was formerly widespread and early records show the species once occurred in the southern parts of the Northern Territory, southwest Queensland to Ooldea on the Nullarbor Plain and as far west as Rawlina in Western Australia. The range of the species has declined in the last 50 years and is mainly restricted to the Strzelecki Desert region of arid South Australia.

Four extant species of *Notomys* occur in arid Australia and all are around 35 g in weight. Along with dusky hopping mouse, the fawn hopping mouse *N. cervinus* was once known from the study area. The spinifex hopping mouse *N. alexis* occurs to the north and west and Mitchell's hopping mouse *N. mitchelli* occurs to the south and west inhabiting mallee country. Three other large hopping mice, each around 100 g in weight once occurred in the study area. The remains of the broad-cheeked hopping mouse *N. robustus*, long-tailed hopping mouse *N. longicaudatus* and short-tailed hopping mouse *N. amplus* have been recorded from owl pellets found in caves along the Flinders Ranges. None of these species have been recorded alive for over 100 years (Watts and Aslin 1981).

*N. fuscus* and *N. cervinus* can be found in close proximity but *N. fuscus* is found mainly on sandy substrates including dunes with sand hill canegrass *Zygochloa paradoxa* whereas the *N. cervinus* is mainly restricted to claypans and gibber plains. *Notomys fuscus* lives communally in complex warren systems. Warrens are often associated with sand hummocks or rabbit warrens and contain a number of vertical shafts (popholes) which they use to escape predators. Both species underwent a contraction in range following the establishment of pastoralism and expansion of rabbits, cats and foxes. By the 1970s *N. fuscus* had become restricted to localities in south-western Queensland and parts of northern South Australia. Extensive surveys in the 1990s recorded *N. fuscus* populations consistently only from within the Strzelecki Regional Reserve and in south-western Queensland near Betoota. The species was also occasionally reported from a number of other sites in the northern and southern Strzelecki Desert, as far south as Quinyambie Station (Moseby *et al.* 1999; Moseby *et al.* 2006).

*Notomys fuscus* is similar to *N. alexis* in appearance and general biology and unlike *N. cervinus* which has a slower rate of reproduction (Watts and Aslin 1981). *N. alexis* is known to show large fluctuations in population numbers in the wild and 'boom-bust' cycles have been reported in some populations of *N. fuscus* but not others (Owens *et al.* 2008).

Concerns about the conservation status of the dusky hopping mouse *N. fuscus* have led to its listing as a species of *Conservation Priority* in the South Australian Arid Lands NRM Region and as *Vulnerable* under the national *EPBC Act 1999*. The species is also listed as *Vulnerable* in Schedule 9 of the *SA National Parks & Wildlife Act 1972* – *Schedule 7* and *9*, amended September 2000.

In 2006, a study using track-based monitoring suggested that the range of *Notomys* spp. had expanded with sign recorded at a large number of sites between Muloorina and Mungeranie Stations on the Birdsville Track (Southgate, 2006). Subsequent trapping confirmed the identity of *N. fuscus* (Bellchambers 2007) in this region and on Kalamurina Station (R. Paltridge, pers. com.). The species was also rediscovered in the Sturt Desert National Park in western New South Wales. Anecdotal reports during 2007 and 2008 indicated hopping mouse numbers had become extremely abundant across the southern parts of the Strzelecki Dunefields and the species was confirmed as *N. fuscus* (Waudby and How 2008; R. Pedler, unpublished data).

In an effort to provide more security for the conservation of this and other threatened species, the SA Arid Lands Draft Biodiversity Strategy (2009) was developed. The relevant 5-year actions identified for the dusky hopping mouse were to:



- determine area of occupancy and relationship between habitat and distribution and abundance of the dusky hopping-mouse in the Strzelecki Desert.
- identify and, where possible, quantify the disruption, and sources of disruption, of key ecological processes supporting individual populations of the Dusky Hopping-mouse in the Strzelecki Desert.
- identify potential habitats within the Strzelecki Desert for the Dusky Hopping-mouse.
- rank populations of the Dusky Hopping-mouse within IBRA subregions for viability, based on size, threats and landscape context.

We carried out work to help address the questions outlined above. Primarily, we focused on

- investigating the southern distribution of *N. fuscus* from the Barrier Hwy in the southeast to Lake Eyre South in the northwest.
- documenting the range of habitats associated with the occurrence of *N. fuscus*
- collecting information on introduced and native species associated with the occurrence of the *N. fuscus*.
- Undertaking trapping to record relative abundance of the species at three sites across its southerly
  range and collect voucher specimens.

### **Methods**

The survey used a combination of tracking and trapping to identify and verify the occurrence of the *N*. *fuscus*. The survey was conducted 5-18 April 2011 and extended from Mulyungarie Station near Olary in the southeast to Muloorina near Marree in the northwest. Existing roads and station tracks were used to reach the location of survey plots and most were situated more than 5 km apart. A GPS was used to record the position of each plot in UTMs (datum: WGS84).

Trapping of animals was conducted at three locations: Mulyungarie, Wooltana and Mundowdna Stations (Appendix 1). Grids were designed to complement the two established *N. fuscus* monitoring grids north of the dingo fence at Montecollina Bore (S.A.) and Pelican Waterhole (Qld). These original grids covered 8 ha and were established by DENR and trapped from 1993 to 2000 (Moseby et al. 2006). The grids established during the current survey were half the size and each was approximately 100 m x 400 m. Ninety Elliott traps were baited with peanut butter and oats and each trap was set 20 m apart with three central trap lines of 20 Elliotts and a line of 15 Elliotts on either side. A set of pitfall traps was set on the grid at five locations spaced along Elliott trap lines. Each set of pitfall traps consisted of one wide pit (200 mm diameter x 600 mm deep) and one narrow pit (150 mm diameter pit x 600 mm deep) set 10 m apart and dug in flush with the ground surface. Fly wire was placed between the pitfall traps in each set with a 3 m tail on either side. Elliott and pit fall traps were sprinkled with Coopex insecticide to prevent ant attack on captured animals. Peanut butter and oat bait was also placed in pitfall traps to reduce house mice attacking other species. Elliott and pitfall traps were set for two consecutive days at each site. Voucher specimens were euthanised using a portable CO<sub>2</sub> chamber. *Notomys fuscus* is characterized by the presence of a well developed throat pouch in both sexes (Figure 1). The colour of the dorsal fur is pale orange and ventral surface is white. Ears are long and delicate and tail is long with brush at the end. All house mice Mus domesticus captured on the first night of trapping were euthanized.

Spotlight counts were conducted at several localities during the study, including each trap grid. Each count involved the driver recording animals seen in the vehicle spotlights and an observer in the left-hand passenger seat recording animals seen with a handheld spotlight. A 5 km transect was sampled with animals recorded on the outward and return legs (10 km in total) with the vehicle traveling at about 10 km/hr. At other sites, opportunistic transects were conducted using only the car headlights, usually when on route to another location at night. In these instances, vehicle speed ranged between 50-70 km/hr.

Track-based monitoring using the occurrence of animal track imprints was the main method used to document the distribution of *N. fuscus* and a range of other native and introduced species. Although it is not feasible to distinguish among extant *Notomys* using only track and gait characteristics, this sign can be used to identify them from other genera. Presence on a plot was recorded if at least three consecutive gait



imprints were observed. The presence of pop holes and runways was used as confirmatory sign. A trackbased monitoring protocol similar to that outlined in Moseby *et al.* (2009) was used. A visual search of a 100m x 200m plot for a period of 25-30 minutes was conducted to determine the occurrence of species including feral cats, foxes, dingoes, cattle, camels, goats, rabbits, red kangaroos, mulgara, small dasyurids, mice and sleepy lizards. The identity of species was assigned on the basis of gait pattern and foot imprint size (**Figure 2**). The age (days) of the most recent track imprint or activity for each species was estimated based on track clarity and antecedent wind conditions. Data for tracks aged two nights or less are presented.

The conditions that affected animal imprint detection at each plot were recorded. This included the intensity of light, sun angle, area of plot with a sandy trackable surface and continuity or size of the sand lenses. Each attribute was scored between 1 and 3, with 1 indicating good response and 3 a poor response. An ordinal detection score was derived for each plot by adding the score for the five attributes. This produced a minimum score of 5 (very good) and 15 (very poor). On each the plot, the composition of dominant ground and shrub vegetation was also recorded and the vegetation cover of each layer was estimated visually. The habitat type was categorised as creek line, sand plain, sand rise and sand dune and the geological characteristics were derived from 1:250 k geological map sheets.







a)

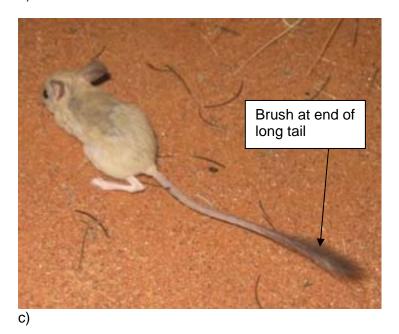
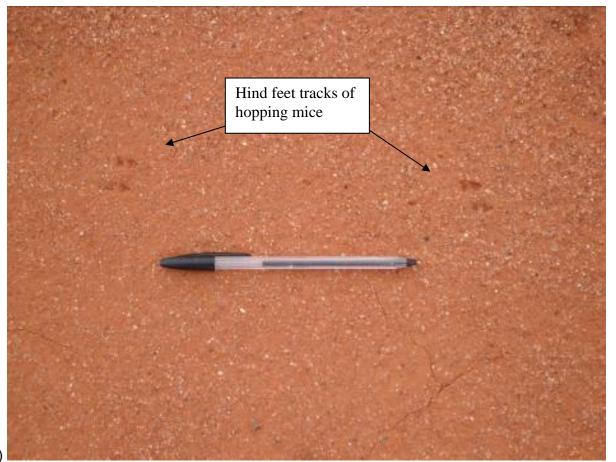



Figure 1. Photos of dusky hopping mice. a) animal found dead on side of road on Kalabity Station - note long back legs b) the distinctive throat pouch and c) dusky hopping mouse photo showing brush on end of tail, body form and pale colour. Arrows indicate distinguishing features



### Trapping and spotlighting


#### Elliotts and pitfall traps

A total of 71 *N. fuscus* individuals were captured at the three trapping grids (**Table 1**). Trap success ranged from 1 % to 21 % with the highest dusky hopping mouse captures recorded at the Wooltana grid followed by Mulyungarie Station and only low abundance recorded at the Mundownda grid. Pregnant females and/or subadult hopping mice were captured at all three trap grids. The introduced house mouse *Mus musculus* was the most abundant small mammal captured with 278 individuals caught. Juvenile and/or pregnant *Mus* were recorded at each site and the site with the highest hopping mice captures corresponded with the lowest house mouse capture rate. The sandy inland mouse (*Pseudomys hermannsburgensis*) was present in low numbers at each trapping grid. One stripe-faced dunnart (*Sminthopsis macroura*) was captured in a pitfall trap on the Mundowdna grid and a short-tailed mouse (*Leggadina forresti*) was captured in an Elliott trap on the Mulyungarie grid.

#### Spotlighting

The abundance of *N*. fuscus seen during spotlight transects in the vicinity of trap grids reflected trapping data. More than 9 hopping mice were recorded per kilometre along transects at Wooltana, 1-1.5 on Mulyungarie and none on Mundowdna Station (**Table 2**). In general, both slow and fast speed spotlight transects indicated a decline in *Notomys* abundance toward the southern, southwest and northwest of the study area. The same trend was not apparent for house mice or rabbits.







b)













**Figure 2**.Tracks of some of the focal animals encountered during the survey. a) single hopping mouse set of imprints,b) tracks showing bipedal hop c) hopping mice popholes on Kalabity Stn, d) hopping mice (arrow), rodent/dasyurid and crested pigeon tracks on Wirrealpa Stn, e) long-haired rat in dried mud f) long haired rat on Mundowdna Stn and g) mulgara tracks on Muloorina Stn

### Track-based monitoring

#### Hopping mice

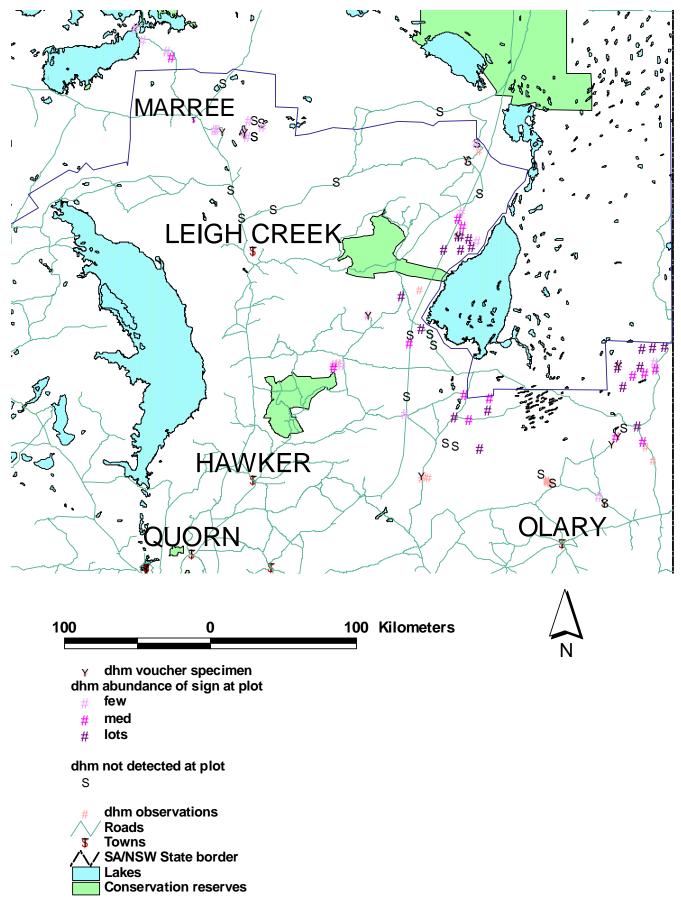
In total, 78 plots were sampled. The plots were mostly located on sand plains with undifferentiated alluvial/fluvial sediments (63%) or sand dunes with aeolian sediments (26%) with the remainder on clays, siltstones, shale or carbonates (11%). Hopping mouse sign was recorded at 70% of the 78 track monitoring plots (Fig. 3). Chance of hopping mouse detection was 0.76 and 0.75 for plots with an ODS<8 and ODS8-10 but reduced to 0.25 when the ODS>11 (n=8).

To the south of Lake Frome, hopping mice sign extended to latitude 32° S or close to the Barrier Hwy. Sign was found on Wirrealpa, Curnamona, Kalabity Boolcoomata Stations and a kangaroo shooter we interviewed reported one near his house at Dismal Swamp in the vicinity of Cockburn. To the northwest of Lake Frome, sign extended from Moolawatana to Muloorina including Mundowdna Station. More hopping mice sign was encountered on sand dunes (85%) with less on sand plains (69%) and least on other geological formations (44%).



Table 1Individuals captured in Elliott and pitfall traps at each trap grid. Total trap nights per grid for Elliott<br/>traps = 180 and pitfalls = 20

| Trap grid   | N. fuscu    | IS       | M. musculus |         |           | P. hermansburgensis |     |         |          |
|-------------|-------------|----------|-------------|---------|-----------|---------------------|-----|---------|----------|
|             | Pit Elliott | Total    | Pit         | Elliott | Total     |                     | Pit | Elliott | Total    |
| Mulyungarie | 22 6        | 28 (14%) | 41          | 105     | 146 (73%) |                     | 2   | 1       | 3 (1.5%  |
| Wooltana    | 25 16       | 41 (21%) | 6           | 28      | 34 (17%)  |                     | 0   | 1       | 1 (0.5%) |
| Mundowdna   | 02          | 2 (1%)   | 7           | 121     | 128 (64%) |                     | 2   | 3       | 5 (2.5%) |


Table 2Observations from spotlight transects conducted during the survey. Results are expressed as the<br/>number of animals seen per km with the total animals seen in brackets. Sites are listed in order<br/>from East to West. a) vehicle speed 10 km/hr: head lights plus hand held spot by passenger; b)<br/>speed 60-80 km/hr: headlights only

| Property         | Trans | Notomys   | Mice      | Rabbits   | Locality notes            |
|------------------|-------|-----------|-----------|-----------|---------------------------|
| a)               |       |           |           |           |                           |
| Mulyungarie Stn  | 10 km | 1.5 (15)  | 0.4 (4)   | 0.3 (3)   | 5 km S homestead          |
| Kalabity Stn     | 16 km | 0.44 (7)  | 0         | 0.44 (7)  | 54J 430619 6470116        |
| Curnamona Stn    | 25 km | 0.08 (2)  | 0.08 (2)  | 0.08 (2)  | Mulga Dam-Swamp Dam       |
| Wooltana Stn     | 10 km | 2.8 (28)  | -         |           | Trap Grid-Mulga Bore      |
| Wooltana Stn     | 10km  | 9 (90)    | 0.5 (5)   | 0.3 (3)   | Trap Grid-Pipeline return |
| Mt Lyndhurst Stn | 10 km | 0         | 0.2 (2)   | 0.5 (5)   | 5 km N homestead          |
| Mundowdna Stn    | 20 km | 0         | 1.5 (30)  | 0.4 (8)   | Within 10km of trap grid  |
| b)               |       |           |           |           |                           |
| Mulyungarie Stn  | 64 km | 0.125 (8) | 0.015 (1) | 0.030 (2) | Barrier Hwy-homestead     |
| Mulyungarie Stn  | 50 km | 1.04 (52) | 0.04 (2)  | 0.12 (6)  | Homestead-Billeroo Bore   |
| Curnamona Stn    | 50 km | 0.04 (2)  | 0         | 0.08 (4)  | Homestead-Koonamore       |
| Wirrealpa Stn    | 8 km  | 0         | 0         | 0.125     | Homestead-camp site       |
| Mundowdna Stn    | 10 km | 0         | 0         | 0.6 (6)   | Woolshed-trap grid        |

Relative abundance of track sign was greater at plots in the vicinity of Lake Frome and on the southern edge of the Strzelecki Desert and sign diminished to the south west and north of these locations (**Fig. 3**).

Hopping mouse sign was recorded from a range of habitats including sand dunes, sand plains and sandy creek lines and aeolian deposits among the foot hills of the Flinders Ranges (**Fig. 4**). Within stony gibber habitat, hopping mice sign was usually restricted to narrow sandy creeks or drainage lines that bisected the gibber plains. Hopping mice sign was even recorded in small patches of sand or isolated sandy rises/dunes within otherwise hard stony substrate. Spotlighting also recorded *dusky hopping mice* sightings in the vicinity of sandy patches within areas of harder substrate.





**Figure 3.** Relative abundance of *N. fuscus* (dhm) track sign at monitoring plots, location of voucher specimens and additional opportunistic observations from tracking or spotlighting

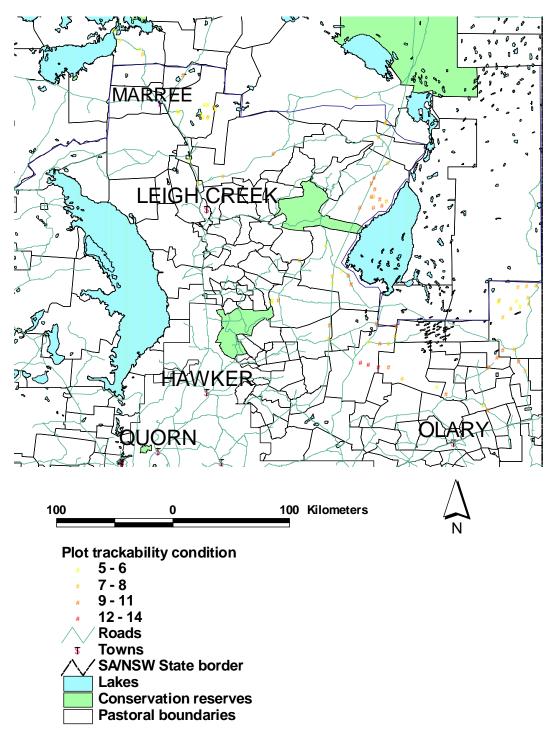













f) **Figure 4.** Habitat used by N. fuscus in the study area a) Kalabity Stn b) Kalabity Stn c) Wirrealpa Stn d) Wirrealpa Stn e) Wooltana Stn and f) Mundowdna Stn



#### **Tracking conditions**

The tracking condition at 34 plots was good to very good with an ordinal detection score (ODS) <8. Tracking condition was reasonable at 36 plots with ODS from 8-10 and eight plots received an ordinal detection score >10 indicating that tracking conditions were poor (**Fig 5**). We encountered rain during two nights of the survey but weather conditions for track-based monitoring were good for the remainder of survey with little cloud cover and no periods of strong wind. Plot tracking conditions with an ODS<8 were more frequently encountered on sand dunes and with mixed geology (60% and 67%, respectively) and less commonly encountered on sand plains (33%).



**Figure 5.** Study area and plot trackability conditions at monitoring plots. Larger scores indicated poorer trackability conditions. Blue line shows location of Dog Fence.



### Other native species

#### Mulgara and long-haired rat

Of the 76 plots sampled, 3 (4%) had putative crest-tailed mulgara (or ampurta) Dasycercus cristicauda sign present (Table 3) and clear sign was recorded on Muloorina Station near Goyder Channel between Lake Evre North and Lake Evre South. Older indistinct tracks of a mulgara or rat size animal showing typical gait pattern was also recorded near the trapping site at Mundowdna Stn. Fresh tracks consistent with those of long-haired rat *Rattus villosissimus* were later recorded at this location. More definitive sign of putative long-haired rat tracks were recorded at five plot locations (mainly in creeklines) and two dry specimens were collected on Muloorina Sation near Goyder Channel and Mundowdna Station. A R. villosissimus specimen was also recently captured at Mundowdna homestead (Stuart Crombie, pers com.).

#### Small rodent/ dasyurid

Small rodent or dasyurid (Dunnarts etc) sign was recorded at 65% of plots. It was not feasible to distinguish among species and much of the sign was probably attributable to house mouse *Mus musculus*.

#### Kangaroo and emu

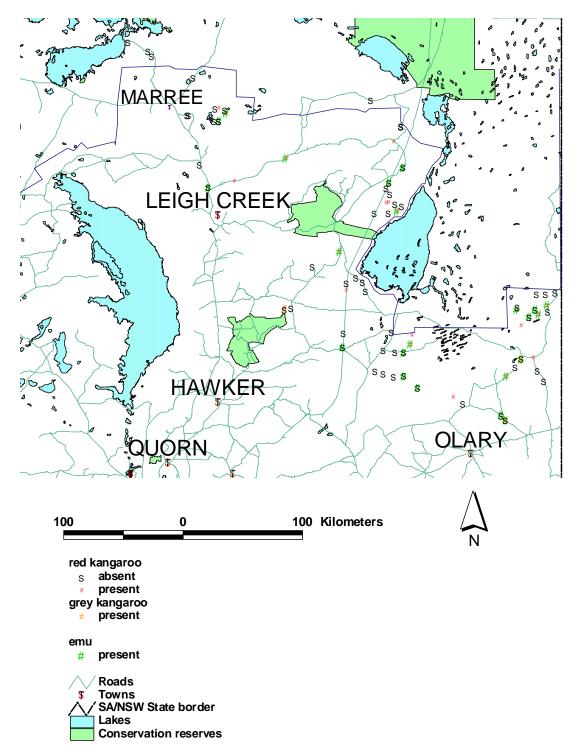
Emu sign was relatively common and recorded on 28% of plots. More red kangaroo sign (26%) was recorded than grey kangaroo (4%). All these species were widely distributed in the study area (Fig. 6).

#### **Predators**

The red fox was the most frequently detected predator and sign was recorded on 23% of plots. (Table 4). Feral cats were the next most commonly detected species (14%) and dingoes/dogs the least commonly detected species (6%). Each of the predator species was broadly distributed in the study area (Fig. 7). Feral cat sign was observed frequently in association with the larger creek lines with free standing water

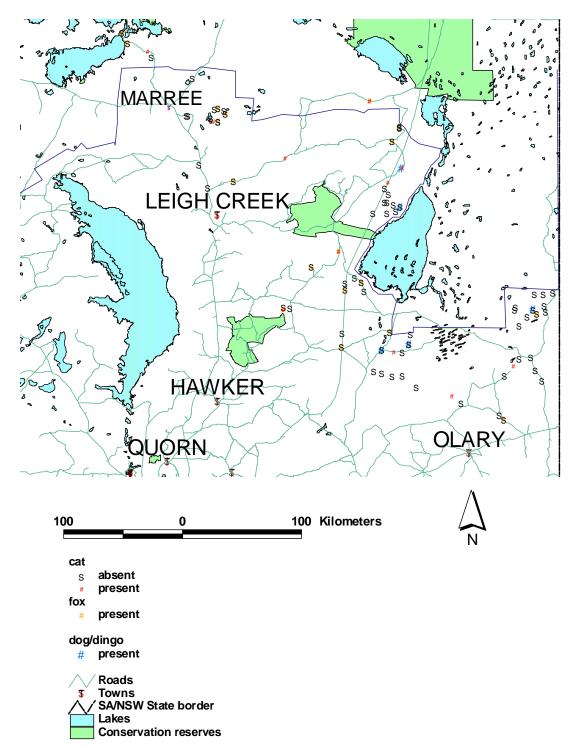
#### Introduced herbivores

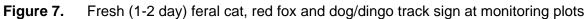
Fresh (1-2 day) rabbit tracks were detected on 76% of plots and sign was detected throughout the study area. Some plots had relatively little fresh track sign and no old evidence of diggings or scats indicating a site transience or recent colonization. Plots with abundant rabbit sign were generally least prevalent on the eastern side of the study area. Many rabbit warrens were inactive or had only one or two active holes. (Fig. 8) Cattle and/or sheep were present on all of the stations visited but fresh track sign was infrequently detected on plots (2.6% and 5.2%, respectively) (Table 4). Pig sign was detected on Mulyungarie Station but not on plots and no camel sign was detected.


| Table 3 | Percentage c | of 78 plots wit | n recer | nt imprint sig | jn (< 2 da | ays) of na | ative species |  |
|---------|--------------|-----------------|---------|----------------|------------|------------|---------------|--|
| Species | Hopping      | Dasyurids       |         |                |            | Red        | Grey          |  |
|         | mouse        | & rodents       | Rat     | Mulgara        | Emu        | kang       | kangaroo      |  |
|         | 70.5%        | 65.4            | 5.1     | 3.8            | 28.2       | 25.6       | 3.8           |  |

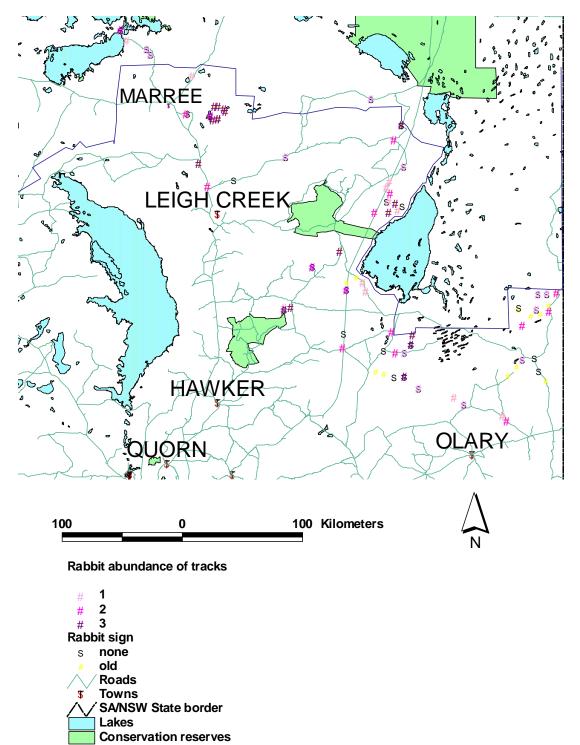
.:... **.** :.. ..... ( , O alaysa) af a att

**Table 4** Proportion of 78 plots with recent imprint sign (< 2 days) of introduced species


| Species | Dingo/<br>Dog | Red<br>fox | Feral<br>cat | European<br>rabbit | Cattle | Sheep | Pig   |
|---------|---------------|------------|--------------|--------------------|--------|-------|-------|
|         | 0.064         | 0.231      | 0.141        | 0.756              | 0.026  | 0.051 | 0.000 |







**Figure 6.** Fresh (1-2 day) emu and red and grey kangaroo track sign at monitoring plots. Blue line shows the location of the Dog Fence.











**Figure 8.** Rabbit: abundance of fresh track sign (1-2 day) and occurrence of old scat or digging and burrow sign at monitoring plots.



### Distribution and abundance of N. fuscus

Trapping, spotlighting and track-based monitoring indicated that hopping mice were very common in parts of the study area particularly closer to Lake Frome and the southern edge of the Strzelecki Desert. *Notomys fuscus* was the only species of hopping mouse recorded during the study, either as captures, live observations or specimens provided by landholders. Similarly *N. fuscus* was also the only species of hopping mouse captured during recent surveys by DENR staff in the Gammon Ranges National Park (de Preu, pers. comm.) and by environmental consultants near the Beverly Uranium Mine (Sue Carter, pers. comm.). Hence, it is reasonable to assume that all hopping mouse track sign encountered by us and similarly, all the hopping mice observed by spotlight can be attributed to *N. fuscus*. Our survey extended the known current distribution of the *N. fuscus* southward almost to the Barrier Hwy and westward to the Flinders Ranges. This represents a substantial expansion in range for the species from its known distribution in the late 1990s. At this time the species could be consistently captured at a few colonies and all of these were north of the Dog Fence. We found the species at some locations over 70 km south and west of the Dog Fence.

The density of *N. fuscus* at the Wooltana and Mulyungarie grids was high at 10 and 7 individuals per ha respectively, but much lower further west on the Mundownda grid, and the species was not recorded on Farina Station. Recent surveys on adjacent Witchelina Station have also failed to record the species (G. Medlin, pers. comm.). It is possible that the large areas of unsuitable rocky habitat between isolated patches of sandy habitat have limited the range and abundance of the species in this region. In contrast, grids at Wooltana and Mulyungarie were present in extensive areas of sand dunes located close to the Strzelecki Desert dunefields facilitating easier colonization.

The density of *N. fuscus* at the Wooltana grid is the highest ever recorded on a trapping grid for this species. In comparison, the highest density recorded at DENR northern trapping grids at Montecollina and SW Queensland between 1993 and 2000 was 8 and 2 individuals per ha, respectively. However, caution is required when comparing the density of *Notomys* and other species with among trap grids and with previous studies. House mice probably impacted significantly on the rate of capture of *Notomys* and other native species reported in our study. *Mus* showed a willingness to enter Elliott traps, were aggressive toward native rodents and small dasyuid species and were extremely abundant. They dominated Elliott trap captures (57%) particularly at Mulyungarie (73%) and this would have displaced native species from being trapped. The greatest number of *Notomys* was captured in Elliotts and pitfall traps at Wooltana Station where *Mus* were least abundant. Elsewhere it has also been shown that high trap success using Elliott traps can be achieved for *N. alexis* (eg. 24%) and *P. hermannsburgensis* (eg. 29%) when *Mus* numbers are low (4%) (Southgate and Masters 1996).

### Habitats associated with the occurrence of N. fuscus

Seasonal conditions at the time of our survey were described by many landholders as similar to the exceptional rainfall years of 1956 and 1974. Vegetative cover was high throughout the study area including the three trap sites and many perennial and short-lived plant species showed recent sign of fruiting and seeding. Prolific seeders such as Button Grass *Dacyloctenium radulans* were common in all habitats supporting a range of species including little button quail *Turnix* velox and large flocks of budgies *Melopsittacus undulatus*. Pregnant and/or subadult *N. fuscus* were recorded at all three trapping grids suggesting that the population was still breeding and food resources had not yet become limiting. The presence of breeding individuals and popholes and burrows also indicates that suitable habitat was present at all three trap grids.

The study demonstrated that *N. fuscus* was capable of occupying a range of habitats much broader than previously characterized by Watts and Aslin (1981) and Owens *et al.* (2006). The species was previously



reported as restricted to sand dunes and ridges. We found them occupying a wide range of habitat types (rocky ranges, gibber plains, sand dunes, sand plains) but nearly always in association with patches of sand. Where individuals were observed in hard gibber or rocky habitat, sandy drainage lines, creeklines or rises were present. Sandy habitat is needed for *N. fuscus* to build the burrow systems it requires to live communally and breed. Isolated sand dunes or rises were also inhabited despite being separated by several kilometers of hard substrate. It is apparent that *N. fuscus*, like other arid zone mammal species, are capable of dispersing over large distances and colonizing small patches of suitable habitat.

The long-term resilience of populations occupying these atypical and remote sandy habitat patches will become clearer once drier conditions return and food availability declines. It is possible that *N. fuscus* distribution will again contract northwards to areas with more continuous sandy habitat.

### Introduced and native species associated with N. fuscus

Saunders and Giles (1975) argued that a rodent irruption requires not only a flush of food stimulated by rain but also a dry period prior to rain. Under these conditions the abundance of parasites, pathogens, competitors, predators are reduced and this allows the rodent population to quickly boom in response to flourishing food resources. The numbers of predators and large competitors often lag behind because of their slower rates of reproduction. The conditions in the region during the study exhibited a number of these characteristics. A drought of almost a decade preceded the exceptional rainfall. Stock numbers were low and the high price/low availability of sheep and cattle was largely preventing the broadscale restocking in the region. Fresh sign of cattle and sheep tracks was recorded from less than 8% of plots compared to 34% of plots during a study on the eastern and western side of Lake Eyre North in 2006 (Southgate 2006). Rabbits were found to be ubiquitous but in relatively low abundance with more rabbits evident in the western part of the study area and less in the east. Landholders reported that a recurrence of calicivirus had recently struck the eastern part but had not yet reached the western part of the survey area. Fresh rabbit sign was recorded from 76% of plots compared to 92% of plots around Lake Eyre in 2006 (Southgate 2006). Less than 1 rabbit per km of spotlight transect was recorded, considerably lower than pre-calicivirus levels. The common occurrence of regenerating perennial species such as mulga Acacia aneura also indicated that a reduction in grazing pressure had occurred in the study area.

Dingo/dog numbers were comparatively low in the study area because of ongoing control efforts and the influence of the Dog Fence. Fresh tracks were recorded at 6% of plots compared to 75% of the plots sampled around Lake Eyre North (and above the Dog Fence) in 2006 (Southgate 2006). Red fox occurrence was similarly low because of control efforts through baiting and shooting and prior drought conditions. During the study fresh fox sign occurred on 23% of plots compared to 75% of plots in the study further north conducted in 2006. Feral cat sign was recorded relatively infrequently (14%) during the study and this was a similar rate of occurrence compared to the 2006 study.

While irruption of *N. fuscus* in the study area fits well with the 'drought-plague' model it does not adequately explain why a similar irruption did not occur following exception rainfall in 1974 (P. Absolm and J. McIntee, pers comm.). Nor does it explain why a number of other rodent and small dasyurid species had begun to expand their range prior to 2010. A southward expansion in the range of the spinifex hopping mouse *N. alexis*, the plains rat *P. australis* and the kultarr *Antechinomys langier* has been documented to the west of the study area (K. Moseby, unpublished; R. Pedler, unpublished). Similarly, the expansion of *N. fuscus* and the crest-tailed mulgara *Dasycercus cristicauda* was documented around Lake Eyre North in 2006 (Southgate 2006). The most likely 'game-changer' has been the release of the rabbit calcivirus in 1995. The subsequent decline in rabbit populations has most probably lowered predator abundance and reduced grazing pressure sufficiently to allow vegetation and associated invertebrate communities to recover. The expansion of several native species is beginning to reflect subtle but broad-scale changes in the landscape brought about by the calicivirus. This conclusion provides support for the hypothesis proposed by Morton (1990) suggesting that invading herbivores can cause habitat degradation and disrupt food resources thus negatively affecting native mammals in arid Australia.



# **Biodiversity Strategy Actions**

Four, five year actions were outlined in the SAAL Board biodiversity strategies for the dusky hopping mouse. This present study has contributed to these actions in the following ways;

• ACTION: Determine area of occupancy and relationship between habitat and distribution and abundance of the dusky hopping-mouse in the Strzelecki Desert.

The area of occupancy during good seasons has now been quantified with regards to the southern limit of the species. This serves as a baseline for future surveys after significant rainfall events allowing changes in distribution to be determined over the long term. This comparison is needed to determine if the species listing of Vulnerable is appropriate or whether the population is stable or increasing.

The range of habitats utilized by the species during these good seasons has also been documented. To determine the relationship between habitats, distribution and abundance, these sites need to be revisited when conditions become dry. In this way, the location of any refugia areas south of the dog fence can be identified and the relationship with habitat features such as sandy patch size, proximity to continuous sand dunes, presence of feral species etc can be determined.

ACTION: Identify and, where possible, quantify the disruption, and sources of disruption, of key
ecological processes supporting individual populations of the Dusky Hopping-mouse in the
Strzelecki Desert.

No relationship was found between hopping mice occupancy and presence or absence of rabbits, cats or foxes. However, rabbit, cat and fox abundance was considered to be low during the survey. This action requires revisiting sites during dry conditions as outlined previously. Occupancy can then be compared with ecological parameters during times of nutritional stress and when populations are low and vulnerable to extinction. Sites should also be revisited when rabbit numbers are high to determine their impact on hopping mice or rabbit proof exclosures could be used to compare population parameters with and without rabbits or stock.

• ACTION: Identify potential habitats within the Strzelecki Desert for the Dusky Hopping-mouse.

Dusky hopping mice were found in a range of sandy habitats and were able to live and breed in very small patches of isolated sandy substrate. These included sandy creeklines, sand sheets on gibber plains and isolated dunes adjacent to rocky ranges. However, the highest density of hopping mice was found in areas of continuous sand dune habitat close to the dog fence. These larger continuous areas are the most likely to support populations of dusky hopping mice during dry times and should be revisited at this time to identify key refugia. The influence of the dog fence is not known and requires comparing distribution and abundance of dusky hopping mice in continuous areas of sand dune both north and immediately south of the dog fence during dry conditions.

• ACTION: Rank populations of the Dusky Hopping-mouse within IBRA subregions for viability, based on size, threats and landscape context.

Populations were not ranked but the highest density of dusky hopping mice south of the dog fence were recorded on Wooltana and Mulyungerie Station, suggesting they may support important populations of the species.



# Recommendations

- 1) Resample monitoring sites during dry conditions to determine the following:
- whether the recent range extension of *N. fuscus* is sustained
- the location of any key refugia sites south of the dog fence
- the strength of association between habitat characteristics (eg. type, size of sandy patch, distance from continuous sandy habitat) and resilience of *N. fuscus* populations.
- the strength of association between predator abundance and abundance of *N. fuscus* during periods of nutritional stress.
- 2) Compare hopping mouse abundance and competitor/predator levels in continuous sand dunes north and immediately south of the dog fence. This will improve our understanding of why *N. fuscus* is rarely recorded south of the dog fence during dry conditions. This action could include comparing track plots and trap grids on either side of the fence.
- 3) Determine the influence of rabbit and stock levels on *N.fuscus* occupancy and abundance through the erection of rabbit/stock proof exclosures and resampling track plots when rabbit abundance is high.

# Acknowledgements

We are grateful for the assistance provided by Reece Pedler in contacting land holders, organizing maps and materials and providing administrative and logistic support during the survey. Pip Masters and John Read provided field assistance during part of the survey. Finally, we would like to thank Dean Hotchin (Mulyungarie Stn), Peter and Emma Ashton (Boolcoomatta), Hamish and Sarah Bartholomaeus (Kalabity Stn), Jeff and Lynette Pumpa and Mick Blanchard (Curnamona Stn), John McIntee (Erudina Stn) Warren and Barbara Fargher (Wirrealpa Stn), Julie Resckhe (Mulga View Stn), Peter and Debbie Maroney (Wertaloona and Wooltana Stn), Audrey Sheehan (Moolawatana Stn), Bill Baade (Mt Lyndhurst), Peter and Janine Litchfield and Stuart Crombie (Mundowdna Stn), Trevor Cindy Mitchell (Muloorina Stn) and Kevin and Anne Dawes (Farina Stn) for support during the survey. Thanks also to Pete Abslom and Paul (the roo shooters) for the yarn and insightful information.



### References

- Bellchambers, K., 2007, Assessing the southern and western limits of the Dusky Hopping Mouse, Notomys fuscus. Unpublished report prepared for The South Australian Arid Lands NRM board- Ardeotis Biological Consultants.
- Morton, S.R., 1990. The impact of European settlement on the vertebrate animals of arid Australia: a conceptual model. *Proceedings from the Ecological Society of Australia* **16**, 201-213.
- Moseby, K., Nano, T. and Southgate, R., 2009. *Tales in the sand: A guide to identifying Australian arid zone fauna using spoor and other signs*. Ecological Horizons, South Australia
- Moseby K.E., Brandle R., and Adams M., 1999. Distribution, habitat and conservation status of the rare dusky hopping-mouse, *Notomys fuscus* (Rodentia: Muridae). *Wildlife Research* **26**, 479-494.
- Moseby K.E., Owens H., Brandle R., Bice J.K., and Gates J., 2006. Variation in population dynamics and movement patterns between two geographically isolated populations of the dusky hopping mouse (*Notomys fuscus*). *Wildlife Research* **33**, 223-232.
- Owens, H.M., Moseby, K.E. and Brandle, R. 2006. Dusky Hopping-mouse. In *The mammals of Australia*. Ed. S. Van Dyck and R. Strahan. NewHolland Publishers. pp 602-604.
- Saunders, G.R. and Giles, J.R. 1975. A relationship between plagues of the house mouse *Mus musculus,* (Rodentia: Muridae) and prolonged periods of dry weather in south-eastern Australia. *Australian Wildlife Research* **4**, 241-247
- Southgate, R. and Masters, P. 1996. Fluctuations of rodent populations in response to rainfall and fire in a central Australian hummock grassland dominated by *Plechtrachne schinzii*. *Wildlife Research* **23**, 289-303.
- Southgate, R., 2006. *Investigation of Dasycercus distribution on canegrass sand dunes in the Lake Eyre region.* Report to the Department of Environment and Heritage (SA) - Envisage Environmental Services.
- Waudby H.P. and How T., 2008. An additional record of the dusky hopping mouse *Notomys fuscus* in South Australia. *Australian Mammalogy* **30**, 47–49.

Watts, C.H.S. and Aslin, H.J. 1981. The rodents of Australia Angus & Robertson, Australia.



#### Appendix 1. Location and habitat features of each trapping grid.

| Grid Location       | Northing   | Easting | Habitat                                                                                                                                                                                                |
|---------------------|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mulyungarie Station | 54J 469211 | 6551138 | Callitrus glaucophylla pale orange dune adjacent to<br>Eucalyptus coolabah creekline. Abundant grasses and<br>understorey of <i>Sida</i> , <i>Abutilon</i> , <i>Salsola kali</i> and <i>Enneapogon</i> |
| Wooltana Station    | 54J 375736 | 6638345 | Linear orange dune vegetated with sandhill canegrass<br>Zygochloa paradoxa, Sida, Rhagodia and Crotolaria<br>eremea. Dunes separated by 500m-1km of grassy clay<br>swale.                              |
| Mundowdna Station   | 54J 245572 | 6706734 | Pale dune located within 1 km of permanent spring and salt pans. Vegetated with <i>Z. paradoxa</i> and <i>Crotolaria</i> as well as overstorey of <i>Acacia ligulata</i> .                             |

### Appendix 2. Details of native species captured. R=regressed, D=distended,B=button, I=imperforate, P=perforate

| Location    | Date    | Species             | Se<br>x | Wt | Testes    | Teats    | Vag. | Elliott or<br>Pitfall | Comments          |
|-------------|---------|---------------------|---------|----|-----------|----------|------|-----------------------|-------------------|
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 34 | Scrotal   |          |      | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 30 | Scrotal   |          |      | Pit                   | ĺ                 |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 27 | Scrotal   |          |      | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 35 | Scrotal   |          |      | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 33 | Scrotal   |          |      | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 31 | Scrotal   |          |      | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 30 | Scrotal   |          |      | Pit                   | Specimen MY-12    |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 28 | Scrotal   |          |      | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 27 | Scrotal   |          |      | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | F       | 36 |           | R        | 1    | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | M       | 36 | Scrotal   |          | · ·  | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | М       | 36 | Scrotal   |          |      | Pit                   |                   |
| Mulyungarie | 8/4/11  | N. fuscus           | F       | 52 |           | D        | Р    | Pit                   | Pregnant          |
| Mulyungarie | 8/4/11  | N. fuscus           | F       | 66 |           | D        | P    | Elliott               | Pregnant          |
| Mulyungarie | 8/4/11  | N. fuscus           | F       | 44 |           | D        | P    | Elliott               | Pregnant          |
| Mulyungarie | 8/4/11  | N. fuscus           | M       | 35 | Scrotal   |          | -    | Elliott               | Trognam           |
| Mulyungarie | 8/4/11  | N. fuscus           | F       | 47 | Ocrotal   | D        | Р    | Elliott               | Pregnant          |
| Mulyungarie | 9/4/11  | N. fuscus           | M       | 23 | Scrotal   | D        | F    | Pit                   | Fleghant          |
| Mulyungarie | 9/4/11  | N. fuscus           | M       | 34 | Scrotal   |          |      | Pit                   |                   |
| , .         | 9/4/11  | N. fuscus           | F       | 32 | Sciolai   | R        | Р    | Pit                   |                   |
| Mulyungarie |         | N. fuscus           | М       | 33 |           | ĸ        | Г    | Pit                   |                   |
| Mulyungarie | 9/4/11  |                     | -       | 1  |           |          |      |                       |                   |
| Mulyungarie | 9/4/11  | N. fuscus           | M       | 32 |           | <b>D</b> |      | Pit                   | De et le statie e |
| Mulyungarie | 9/4/11  | N. fuscus           | F       | 37 |           | R        |      | Pit                   | Post-lactating    |
| Mulyungarie | 9/4/11  | N. fuscus           | F       | 31 |           | R        | Р    | Pit                   |                   |
| Mulyungarie | 9/4/11  | N. fuscus           | M       | 27 | Abdominal |          |      | Pit                   |                   |
| Mulyungarie | 9/4/11  | N. fuscus           | M       | -  | Abdominal | _        |      | Pit                   |                   |
| Mulyungarie | 9/4/11  | N. fuscus           | F       | 19 |           | В        | 1    | Elliott               |                   |
| Mulyungarie | 9/4/11  | N. fuscus           | F       | -  |           | D        | Р    | Elliott               |                   |
| Mulyungarie | 9/4/11  | P. hermansburgensis | F       | 12 |           | R        | 1    | Pit                   | Specimen MY-12    |
| Mulyungarie | 9/4/11  | P. hermansburgensis | F       | 11 |           | D        | Р    | Pit                   |                   |
| Mulyungarie | 9/4/11  | P. hermansburgensis | -       | -  |           | -        | -    | Elliott               |                   |
| Mulyungerie | 9/4/11  | L. forresti         | -       | -  |           |          |      |                       | Specimen MY-12    |
| Wooltana    | 13/4/11 | N. fuscus           | М       | 24 | Scrotal   |          |      | Pit                   | Narrow pit        |
| Wooltana    | 13/4/11 | N. fuscus           | M       | 24 | Scrotal   |          |      | Pit                   | Wide pit          |
| Wooltana    | 13/4/11 | N. fuscus           | F       | 28 |           | В        | 1    | Pit                   | Wide pit          |
| Wooltana    | 13/4/11 | N. fuscus           | F       | 31 |           | В        | 1    | Pit                   | Wide pit          |
| Wooltana    | 13/4/11 | N. fuscus           | M       | 29 | Scrotal   |          |      | Pit                   | Small pit         |
| Wooltana    | 13/4/11 | N. fuscus           | F       | 28 |           | В        | 1    | Pit                   | Wide pit          |
| Wooltana    | 13/4/11 | N. fuscus           | М       | 32 | Scrotal   |          |      | Pit                   | Wide Pit          |
| Wooltana    | 13/4/11 | N. fuscus           | М       | 34 | Scrotal   |          |      | Pit                   | Wide Pit          |
| Wooltana    | 13/4/11 | N. fuscus           | М       | 34 | Scrotal   |          |      | Pit                   | Wide Pit          |
| Wooltana    | 13/4/11 | N. fuscus           | F       | 29 |           | В        | 1    | Pit                   | Wide pit          |
| Wooltana    | 13/4/11 | N. fuscus           | М       | 28 | Scrotal   |          |      | Elliott               |                   |
| Wooltana    | 13/4/11 | N. fuscus           | F       | 31 |           | В        | 1    | Elliott               |                   |
| Wooltana    | 13/4/11 | N. fuscus           | M       | 31 | Scrotal   |          |      | Elliott               |                   |
| Wooltana    | 13/4/11 | N. fuscus           | М       | 20 | Scrotal   |          |      | Pit                   | Wide pit          |
| Wooltana    | 13/4/11 | N. fuscus           | F       | 15 |           | В        | 1    | Pit                   | Subadult Wide pit |
| Wooltana    | 13/4/11 | N. fuscus           | М       | 31 | Scrotal   |          |      | Pit                   | Wide pit          |
| Wooltana    | 13/4/11 | N. fuscus           | М       | 31 | Scrotal   |          |      | Elliott               |                   |



| Wooltana  | 13/4/11 | N. fuscus           | М | 33 | Scrotal   |   |   | Pit     | Narrow pit          |
|-----------|---------|---------------------|---|----|-----------|---|---|---------|---------------------|
| Wooltana  | 13/4/11 | N. fuscus           | F | 30 |           | R | Р | Pit     | Narrow pit          |
| Wooltana  | 13/4/11 | N. fuscus           | М | 18 | Abdominal |   |   | Pit     | Subadult Narrow pit |
| Wooltana  | 13/4/11 | N. fuscus           | F | 21 |           | В | 1 | Pit     | Narrow pit          |
| Wooltana  | 13/4/11 | N. fuscus           | F | 15 |           | В | 1 | Pit     | Subadult Narrow pit |
| Wooltana  | 13/4/11 | N. fuscus           | F | 23 |           | В | 1 | Pit     | Wide pit            |
| Wooltana  | 13/4/11 | N. fuscus           | М | 20 | Abdominal |   |   | Pit     | Wide pit            |
| Wooltana  | 13/4/11 | N. fuscus           | F | 16 |           | В | 1 | Pit     | Subadult Narrow pit |
| Wooltana  | 13/4/11 | N. fuscus           | М | 35 | Scrotal   |   |   | Elliott |                     |
| Wooltana  | 13/4/11 | N. fuscus           | - | 23 |           |   |   | Elliott |                     |
| Wooltana  | 13/4/11 | P. hermansburgensis | М | 12 | Scrotal   |   |   | Elliott | Specimen WO-06      |
| Wooltana  | 14/4/11 | N. fuscus           | М | 28 | Scrotal   |   |   | Pit     | Wide pit            |
| Wooltana  | 14/4/11 | N. fuscus           | М | 29 | Scrotal   |   |   |         | Narrow pit          |
| Wooltana  | 14/4/11 | N. fuscus           | F | 27 |           | В | 1 | Pit     | Narrow pit          |
| Wooltana  | 14/4/11 | N. fuscus           | М | 33 | Scrotal   |   |   | Elliott |                     |
| Wooltana  | 14/4/11 | N. fuscus           | F | 20 |           | В | 1 | Elliott | Subadult            |
| Wooltana  | 14/4/11 | N. fuscus           | F | 45 |           | D | Р | Pit     | Pregnant narrow pit |
| Wooltana  | 14/4/11 | N. fuscus           | F | 30 |           | В | Р | Elliott |                     |
| Wooltana  | 14/4/11 | N. fuscus           | F | 32 |           | В | 1 | Elliott |                     |
| Wooltana  | 14/4/11 | N. fuscus           | F | 40 |           | D | Р | Elliott | Pregnant            |
| Wooltana  | 14/4/11 | N. fuscus           | F | 52 |           | D | Р | Elliott | Pregnant            |
| Wooltana  | 14/4/11 | N. fuscus           | М | 24 | Scrotal   |   |   | Elliott |                     |
| Wooltana  | 14/4/11 | N. fuscus           | F | 46 |           | D | Р | Elliott | Pregnant            |
| Wooltana  | 14/4/11 | N. fuscus           | М | 31 | Scrotal   |   |   | Elliott | Specimen WO-06      |
| Wooltana  | 14/4/11 | N. fuscus           | F | 36 |           | R | Р | Pit     | Specimen WO-06      |
| Mundownda | 16/4/11 | N. fuscus           | F | 42 |           | D | Р | Elliott | Pregnant            |
| Mundownda | 16/4/11 | N. fuscus           | М | 30 | Scrotal   |   |   | Elliott | Specimen MU-03      |
| Mundownda | 16/4/11 | P. hermansburgensis | F | 11 |           | В | 1 | Pit     | Narrow pit          |
| Mundownda | 16/4/11 | P. hermansburgensis | М | 13 | Scrotal   |   |   | Elliott |                     |
| Mundownda | 16/4/11 | P. hermansburgensis | F | 12 |           | В | 1 | Elliott |                     |
| Mundownda | 17/4/11 | P. hermansburgensis | М | 14 | Scrotal   |   |   | Pit     |                     |
| Mundownda | 17/4/11 | P. hermansburgensis | F | 15 |           | R | 1 | Elliott |                     |
| Mundownda | 17/4/11 | S. macroura         | F | 17 |           |   |   | Pit     | Developed pouch     |

# Appendix 3. The location details of plots sampled and opportunistic records during the survey

|      | 5         | urvej | y |        |         |           |           |              |                |      |     |
|------|-----------|-------|---|--------|---------|-----------|-----------|--------------|----------------|------|-----|
| Name | Date      | Zone  | Э |        | Easting | Northing  | Lat_dd    | Long_dd      | Location       | Туре | dhm |
| MY01 | 6-Apr-11  | 54    | J | 481914 | 6549557 | -31.18791 | 140.81018 | Mulyungarie  | plot           | 1    |     |
| MY02 | 6-Apr-11  | 54    | J | 489976 | 6552607 | -31.16049 | 140.89483 | Mulyungarie  | plot           | 1    |     |
| MY03 | 6-Apr-11  | 54    | J | 484512 | 6545704 | -31.22272 | 140.83738 | Mulyungarie  | plot           | 1    |     |
| MY04 | 6-Apr-11  | 54    | J | 477527 | 6543344 | -31.2439  | 140.76399 | Mulyungarie  | plot           | 1    |     |
| MY05 | 6-Apr-11  | 54    | J | 468817 | 6549367 | -31.18935 | 140.67272 | Mulyungarie  | plot           | 1    |     |
| MY06 | 6-Apr-11  | 54    | J | 471790 | 6535907 | -31.31087 | 140.70354 | Mulyungarie  | plot           | 1    |     |
| MY07 | 7-Apr-11  | 54    | J | 480071 | 6509242 | -31.20497 | 140.90182 | Mulyungarie  | plot           | 1    |     |
| MY08 | 7-Apr-11  | 54    | J | 490648 | 6547678 | -31.55163 | 140.79002 | Mulyungarie  | plot           | 1    |     |
| MY09 | 7-Apr-11  | 54    | J | 495813 | 6563208 | -31.06487 | 140.95611 | Mulyungarie  | plot           | 1    |     |
| MY10 | 7-Apr-11  | 54    | J | 489213 | 6562494 | -31.07127 | 140.88693 | Mulyungarie  | plot           | 1    |     |
| MY11 | 7-Apr-11  | 54    | J | 483008 | 6561923 | -31.07635 | 140.82187 | Mulyungarie  | plot           | 1    |     |
| MY13 | 8-Apr-11  | 54    | J | 483338 | 6498385 | -31.64964 | 140.82426 | Mulyungarie  | plot           | 1    |     |
| MY14 | 8-Apr-11  | 54    | J | 488215 | 6489777 | -31.72736 | 140.87559 | Mulyungarie  | plot           | 1    |     |
| MY15 | 8-Apr-11  | 54    | Н | 460812 | 6456963 | -32.02279 | 140.58502 | Boolcoomata  | plot           | 0    |     |
| MY16 | 8-Apr-11  | 54    | J | 458019 | 6460895 | -31.98722 | 140.55561 | Boolcoomata  | plot           | 1    |     |
| KL01 | 9-Apr-11  | 54    | J | 430612 | 6470103 | -31.9028  | 140.26617 | Kalabity     | plot           | 0    |     |
| MY12 | 9-Apr-11  | 54    | J | 469209 | 6551147 | -31.17335 | 140.67682 | Mulyungarie  | plot+trap grid | 1    |     |
| MY17 | 9-Apr-11  | 54    | J | 471977 | 6507864 | -31.56389 | 140.70471 | Mulyungarie  | plot           | 0    |     |
| MY18 | 9-Apr-11  | 54    | J | 467557 | 6501523 | -31.62099 | 140.65793 | Mulyungarie  | plot           | 1    |     |
| YM01 | 9-Apr-11  | 54    | J | 461528 | 6493836 | -31.69015 | 140.59406 | Yarramba     | plot           | 1    |     |
| CM01 | 10-Apr-11 | 54    | J | 373685 | 6494968 | -31.67362 | 139.66745 | Curnamona    | plot           | 0    |     |
| CM02 | 10-Apr-11 | 54    | J | 367718 | 6496861 | -31.65588 | 139.60478 | Curnamona    | plot           | 0    |     |
| KL02 | 10-Apr-11 | 54    | J | 423834 | 6476244 | -31.84697 | 140.19498 | Kalabity     | plot           | 0    |     |
| KL03 | 10-Apr-11 | 54    | J | 398537 | 6483308 | -31.78128 | 139.92837 | Kalabity     | plot           | 1    |     |
| KL04 | 10-Apr-11 | 54    | J | 388306 | 6493241 | -31.69072 | 139.82147 | Kalabity     | plot           | 1    |     |
| KL05 | 10-Apr-11 | 54    | J | 380719 | 6492892 | -31.69311 | 139.74139 | Kalabity     | plot           | 1    |     |
| CM03 | 11-Apr-11 | 54    | J | 373443 | 6514530 | -31.49715 | 139.66741 | Curnamona    | plot           | 1    |     |
| CM04 | 11-Apr-11 | 54    | J | 381874 | 6512992 | -31.51192 | 139.75599 | Curnamona    | plot           | 1    |     |
| CM05 | 11-Apr-11 |       | J | 387871 | 6513106 | -31.51149 | 139.81915 | Curnamona    | plot           | 1    |     |
| CM06 | 11-Apr-11 |       | J | 392666 | 6519532 | -31.45398 | 139.87033 | Curnamona    | plot           | 1    |     |
| CM07 | 11-Apr-11 |       | J | 393764 | 6527816 | -31.37935 | 139.88277 | Curnamona    | plot           | 1    |     |
| ER01 | 11-Apr-11 |       | J | 379039 | 6529752 | -31.36045 | 139.72818 | Erudina      | plot           | 1    |     |
| GL01 | 11-Apr-11 | -     | J | 344213 | 6516766 | -31.47341 | 139.36008 | Gas pipeline | plot           | 1    |     |
| GL02 | 11-Apr-11 | 54    | J | 344660 | 6528233 | -31.37005 | 139.36658 | Gas pipeline | plot           | 0    |     |
|      |           |       |   |        |         |           |           |              |                |      |     |



| Whot         11-Apr-11         54         J         306009         654017         31.17697         138.87344         Wirrealpa         plot         1           GL03         12-Apr-11         54         J         346009         656429         31.04287         139.38031         Gas pipeline         plot         0           W101         12-Apr-11         54         J         301704         657448         31.1858         138.92128         Wirreslap         plot         1           W103         12-Apr-11         54         J         301704         657448         31.1858         138.9108         Wirreslap         plot         1           W103         12-Apr-11         54         J         301704         657468         31.935108         Wirreslap         plot         1           W103         12-Apr-11         54         J         307617         668050         30.7572         139.75621         Woraloona         plot         1           W002         14-Apr-11         54         J         375637         6623622         30.46321         139.70507         Woralana         plot         1           W0014         14-Apr-11         54         J         375637         66236                                                                                                                                                                                 |       |           |    |   |        |         |           |           |              |               |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|----|---|--------|---------|-----------|-----------|--------------|---------------|---|
| CL03         12.Apr-11         54         J         346303         6504427         30.98696         Gas pipeline         plot         1           NV01         12.Apr-11         54         J         324603         533.93095         Tas pipeline         plot         1           NV02         12.Apr-11         54         J         301897         6543049         -31.1635         138.91896         Wirrealpa         plot         1           NV01         12.Apr-11         54         J         301897         6571154         -30.8648         138.51469         Wirrealpona         plot         1           WR02         12.Apr-11         54         J         360145         6583618         -31.05291         139.51459         Wirrealpona         plot         1           W002         12.Apr-11         54         J         365715         6638205         -30.30752         139.7571         Moolawatha         plot         1           W001         14.Apr-11         54         J         373639         6638205         -30.30768         Wooltana         plot         1           W001         14.Apr-11         54         J         373639         66382457         -30.32018         139.7472 <td>WI01</td> <td>11-Apr-11</td> <td>54</td> <td>J</td> <td>306919</td> <td>6549017</td> <td>-31.17697</td> <td>138.97394</td> <td>Wirrealpa</td> <td>plot</td> <td>1</td> | WI01  | 11-Apr-11 | 54 | J | 306919 | 6549017 | -31.17697 | 138.97394 | Wirrealpa    | plot          | 1 |
| NV01         12-Apr-11         64         J         301937         683434         -30.66882         139.13252         Mulga View         plot         1           W103         12-Apr-11         64         J         307104         6547648         -31.18335         138.91896         Wirrealpa         plot         1           W101         12-Apr-11         54         J         365017         6547488         -30.05231         138.4152         Wertalcona         plot         1           W103         12-Apr-11         54         J         360176         6563670         -30.75194         133.3522         Wertalcona         plot         1           W102         12-Apr-11         54         J         326126         6536708         -30.37519         133.3622         Wooltana         plot         1           W102         14-Apr-11         54         J         327528         663319         30.3752         139.7561         Wooltana         plot         1           W1001         14-Apr-11         54         J         375628         6634697         -30.3714         139.7321         Wooltana         plot         1           W1001         14-Apr-11         54         J         <                                                                                                                                                                             | GL03  |           | 54 | J | 346069 | 6564529 | -31.04287 | 139.38696 | Gas pipeline | plot          | 1 |
| VIN02         12-Apr-11         64         J         301897         654908         -31.754         138,92128         Wirrealpa         plot         1           WR01         12-Apr-11         64         J         307504         657154         -30.9846         139,51082         Wertaloona         plot         0           WR01         12-Apr-11         64         J         300133         653121         31.05211         319.45125         Wertaloona         plot         1           M002         14-Apr-11         54         J         30217         657488         -30.95712         139.7521         Wooltana         plot         1           M003         14-Apr-11         54         J         325176         6529122         -30.46361         139.7508         Wooltana         plot         1           M004         14-Apr-11         54         J         37538         653425         -30.3101         139.717         Wooltana         plot         1           WO11         14-Apr-11         54         J         37539         653426         -30.3201         139.7177         Wooltana         plot         1           WO11         14-Apr-11         54         J         375336 <td>GL04</td> <td>12-Apr-11</td> <td>54</td> <td>J</td> <td>346303</td> <td>6570447</td> <td>-30.98953</td> <td>139.39031</td> <td>Gas pipeline</td> <td>plot</td> <td>0</td>       | GL04  | 12-Apr-11 | 54 | J | 346303 | 6570447 | -30.98953 | 139.39031 | Gas pipeline | plot          | 0 |
| WI03         12.Apr-11         64         J         30704         6647648         -31.18336         138.9486         Wirnalpa         plot         0           WR01         12.Apr-11         64         J         365013         6653162         -31.05291         139.55469         Wertaloona         plot         0           WR03         12.Apr-11         64         J         305017         6596706         -30.75194         139.3522         Wertaloona         plot         1           M002         14.Apr-11         64         J         326521         663610         30.7058         Wooltana         plot         1           M003         14.Apr-11         54         J         375725         663926         -30.46321         139.60122         Wooltana         plot         1           M004         14.Apr-11         54         J         375839         663325         -30.43211         33.8066         Wooltana         plot         1           WO01         14.Apr-11         54         J         37576         6634647         -30.2311         137.1717         Wooltana         plot         1           WO11         14.Apr-11         54         J         373786         66346477                                                                                                                                                                                 | MV01  | 12-Apr-11 | 54 | J | 321460 | 6583443 | -30.86882 | 139.13252 | Mulga View   | plot          | 1 |
| VR101         12-Apr-11         64         J         37604         6571154         -30.9846         139.51082         Wertaloona         plot         0           VR103         12-Apr-11         64         J         360133         6531612         31.05281         313.45125         Wertaloona         plot         1           M012         14-Apr-11         64         J         380468         663107         30.44641         139.7521         Wooltana         plot         1           M003         14-Apr-11         64         J         366716         6629122         -30.46361         139.70508         Wooltana         plot         1           M004         14-Apr-11         64         J         375738         663842         -30.38065         138.7066         Wooltana         plot         1           W007         14-Apr-11         54         J         375707         663482         -30.3755         138.74847         Wooltana         plot         1           W011         14-Apr-11         54         J         375707         6644507         -30.3755         138.7487         Wooltana         plot         1           W013         14-Apr-11         54         J         37                                                                                                                                                                                 |       | 12-Apr-11 | 54 | J | 301897 | 6549098 | -31.1754  | 138.92128 | Wirrealpa    | plot          | 1 |
| WR03         12-Apr-11         64         J         360133         6633612         -31.05291         139.53469         Wertaloona         plot         1           WR04         12-Apr-11         64         J         305017         6547688         30.3752         139.3522         Wertaloona         plot         1           MC02         14-Apr-11         64         J         305615         663606         -30.3752         139.5751         Moolawata         plot         1           MC04         14-Apr-11         64         J         37572         663305         -30.46321         139.7058         Wooltana         plot         1           MC06         14-Apr-11         64         J         375728         663325         -30.37956         139.6647         Wooltana         plot         1           WC07         14-Apr-11         64         J         376368         663467         -30.27171         139.86437         Wooltana         plot         1           WC01         14-Apr-11         64         J         37374         663467         -30.27171         139.8785         Wooltana         plot         1           WC11         14-Apr-11         64         J         38538<                                                                                                                                                                                 | WI03  | 12-Apr-11 | 54 | J | 301704 | 6547548 | -31.18935 | 138.91896 |              | plot          |   |
| VR03         12-Apr-11         54         J         33017         6596706         30.75794         139.3822         Weratoona         plot         1           NO03         14-Apr-11         54         J         380468         6636506         -30.39752         139.75571         Moolamaa         plot         1           NO03         14-Apr-11         54         J         382515         6629129         -30.46321         139.77560         Woolanaa         plot         1           NO05         14-Apr-11         54         J         375726         6633419         -30.39765         139.64127         Moolanaa         plot         1           WO01         14-Apr-11         54         J         37568         6634957         -30.33058         139.64127         Moolanaa         plot         1           WO11         14-Apr-11         54         J         375768         6634957         -30.3211         139.71717         Woolanaa         plot         1           WO11         14-Apr-11         54         J         37579         6643957         -30.23214         139.80587         Woolanaa         plot         1           WO12         14-Apr-11         54         J         3                                                                                                                                                                                 |       | 12-Apr-11 | 54 | J | 357804 | 6571154 | -30.9846  | 139.51082 |              | plot          | 0 |
| WR04         12-Apr-11         54         J         340745         6536706         -30.7571         Moclawatna         plot         1           MC03         14-Apr-11         54         J         380468         6636508         -30.97521         Moclawatna         plot         1           MC04         14-Apr-11         54         J         375671         Moclawatna         plot         1           MC05         14-Apr-11         54         J         375726         Moclawatna         plot         1           WC06         14-Apr-11         54         J         375736         663325         -30.37956         Woolana         plot         1           WC07         14-Apr-11         54         J         376864         663497         -30.31714         Woolana         plot         1           WC11         14-Apr-11         54         J         375707         665462         -30.32326         139.7083         Woolana         plot         1           WC11         14-Apr-11         54         J         335707         664978         -30.23058         39.7083         Muclawatna         plot         1         1           WC11         14-Apr-11         54 <td>WR02</td> <td>12-Apr-11</td> <td>54</td> <td></td> <td>360183</td> <td>6563612</td> <td>-31.05291</td> <td>139.53469</td> <td>Wertaloona</td> <td>plot</td> <td>0</td>                           | WR02  | 12-Apr-11 | 54 |   | 360183 | 6563612 | -31.05291 | 139.53469 | Wertaloona   | plot          | 0 |
| NO02         14 - Åpr-11         54         J         380468         6631107         30.375571         Moolawatan         plot         1           NO04         14 - Åpr-11         54         J         375187         6631107         30.46361         139.77560         Wooltana         plot         1           NO05         14 - Åpr-11         54         J         375728         663325         -30.38065         139.7056         Wooltana         plot         1           V0001         14 - Åpr-11         54         J         37528         663419         -30.38068         Wooltana         plot         0           V0101         14 - Åpr-11         54         J         37568         80.6847         -30.3211         39.77631         Wooltana         plot         1           V011         14 - Åpr-11         54         J         37576         6634957         -30.23251         139.70831         Wooltana         plot         1           V011         14 - Åpr-11         54         J         375786         30.27741         139.6878         Wooltana         plot         1           V012         15 - Åpr-11         54         J         365739         -90172         1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                    |       |           |    |   |        |         |           |           |              |               |   |
| NO03         14-Apr-11         54         J         326151         662129         30.46361         139.77568         Wooltana         plot         1           NO05         14-Apr-11         54         J         37567         6623125         30.46361         39.70568         Wooltana         plot         1           WO00         14-Apr-11         54         J         375726         6633325         30.30661         39.7066         Wooltana         plot         1           WO07         14-Apr-11         54         J         37568         6634547         -30.37958         Wooltana         plot         1           WO11         14-Apr-11         54         J         375707         665462         -30.32325         139.70831         Wooltana         plot         1           WO13         14-Apr-11         54         J         375707         6654962         -30.2325         139.7083         Murploite         plot         1           WO13         14-Apr-11         54         J         335513         667430         -30.4115         138.4149         Wooltana         plot         1           MU01         15-Apr-11         54         J         375737         6673981                                                                                                                                                                                       |       | 12-Apr-11 |    |   |        |         | -30.75194 | 139.33622 | Wertaloona   | plot          | - |
| MOde         14-Apr-11         54         J         375687         6629129         -30.46321         133.70508         Wooltana         plot         1           WOO         14-Apr-11         54         J         375728         66338325         -30.30651         133.7066         Wooltana         plot         1           WOO         14-Apr-11         54         J         375680         6633495         -30.37568         133.7066         Wooltana         plot         1           WOO         14-Apr-11         54         J         378680         6634957         -30.33258         133.70564         Wooltana         plot         1           WO11         14-Apr-11         54         J         373794         6634977         -30.2321         133.70814         Wooltana         plot         1           WO12         14-Apr-11         54         J         373794         6649776         -30.2325         133.70861         Wooltana         plot         1         1           WU22         15-Apr-11         54         J         387381         -30.2325         138.70847         Murplorize         plot         0         0         1         1         137.8937         Murplorize         plo                                                                                                                                                                         | MO02  | •         | 54 |   | 380468 | 6636508 | -30.39752 | 139.75571 | Moolawatna   | plot          | - |
| NO05         14-Apr-11         54         J         365715         6623052         -30.48623         138-7664         Wooltana         plot         1           VW001         14-Apr-11         54         J         373639         6633434         -30.38065         139.7664         Wooltana         plot         1           VW007         14-Apr-11         54         J         37868         6638497         -30.32015         139.7647         Wooltana         plot         1           VW011         14-Apr-11         54         J         378707         6654662         -30.3201         339.6783         Wooltana         plot         1           W013         14-Apr-11         54         J         378707         6654662         -30.3211         33.6783         Wooltana         plot         1           W014         15-Apr-11         54         J         383908         6701530         -23.8171         33.8179         Wooltana         plot         1         1         1         30.4744         33.85167         Mt Lynchurst         plot         0         1         1         1         1         1         3.37529         -23.2167         133.81677         Mt Lynchurst         plot         1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>                                                     |       |           |    |   |        |         |           |           |              | •             |   |
| WO001         14-Åpr-11         54         J         375728         66338325         -30.39665         139.7066         Wooltana         plot         1           WO00         14-Apr-11         54         J         378680         6638495         -29.31771         139.6487         Wooltana         plot         0           WO10         14-Apr-11         54         J         378680         6634957         -30.33265         Moolavana         plot         1           WO11         14-Apr-11         54         J         378768         663497         -30.3235         139.70811         Wooltana         plot         1           WO12         14-Apr-11         54         J         378774         6649776         -30.2325         139.70831         Wooltana         plot         1           W012         15-Apr-11         54         J         38831         667329         -30.11851         139.70831         Wooltana         plot         0         0           ML02         16-Apr-11         54         J         305799         -30.2365         138.6167         Mt Lyndhurst         plot         0         0         0         0         0         0         0         0         0 <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>                                                                      |       | •         |    |   |        |         |           |           |              | •             |   |
| WOOR         14-Apr-11         54         J         373639         6638479         -30.37956         139.68487         Woolawaina<br>Moolawaina<br>Plot         plot         0           WOOT         14-Apr-11         54         J         385304         6634957         -30.41198         139.80587         Woolana<br>Plot         plot         1           WO11         14-Apr-11         54         J         375707         6654662         -30.32325         139.70831         Woolana<br>Plot         plot         1           WO13         14-Apr-11         54         J         338398         6671530         -39.8112         139.879863         Woolana<br>Plot         plot         0           WU12         15-Apr-11         54         J         383986         6673891         -30.4902         138.9167         ML Lyndhurst         plot         0           ML01         15-Apr-11         54         J         283896         6654226         -30.22551         Maloorina<br>Plot         plot         0           ML01         15-Apr-11         54         J         283894         ML Lyndhurst         plot         0           ML02         16-Apr-11         54         J         2831621         6739996         -30.22714<                                                                                                                                             |       |           |    |   |        |         |           |           |              | •             |   |
| WOOD         14-Apr-11         54         J         378680         6689669         -29.91771         133.7432         Moolanan         plot         1           WOO1         14-Apr-11         54         J         376668         6649047         -30.3119         139.0587         Wooltana         plot         1           WO12         14-Apr-11         54         J         376707         6654662         -30.3325         139.7081         Wooltana         plot         1           WO11         14-Apr-11         54         J         3385831         6667490         -30.11851         139.7986         Wooltana         plot         0           WU12         15-Apr-11         54         J         308736         6723274         -28.81273         139.57199         plot         0           WU12         16-Apr-11         54         J         203836         6757329         -29.28107         137.898637         Mulcorina         plot         1           MA02         17-Apr-11         53         J         767634         -29.42437         137.898637         Mulcorina         plot         1           MA03         17-Apr-11         54         J         231694         6690262 <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></td<>                                                                  |       | •         |    |   |        |         |           |           |              | •             |   |
| WO10         14-Apr-11         54         J         386304         6634957         -30.41196         139.7171         Wooltana         plot         1           WO11         14-Apr-11         54         J         375707         6684662         -30.3201         139.7171         Wooltana         plot         1           WO13         14-Apr-11         54         J         373707         6684662         -30.23714         139.67835         Wooltana         plot         1           WO14         14-Apr-11         54         J         383308         6701530         -29.8112         139.57199         Wooltana         plot         0           WU12         15-Apr-11         54         J         306399         6673981         -29.6127         139.57199         MLyndhurst         plot         0           ML01         15-Apr-11         53         J         7813983         6757329         -29.28107         137.89637         Mulcorina         plot         1           MA02         17-Apr-11         53         J         787131         678994         -29.72431         138.4984         Mulcorina         plot         1           MA03         17-Apr-11         54         J <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                     |       |           |    |   |        |         |           |           |              |               |   |
| W011         14-Apr-11         54         J         376768         6646047         -30.3201         139.71717         Wooltana         plot         1           W012         14-Apr-11         54         J         373704         6649776         -30.23714         139.88785         Wooltana         plot         1           W014         14-Apr-11         54         J         386831         6667490         -30.11851         139.81489         Wooltana         plot         0           WU14         15-Apr-11         54         J         380580         6673891         -30.11851         139.81489         Wooltana         plot         0           ML01         15-Apr-11         54         J         306580         6673891         -30.2058         138.9167         Mt Lyndhurst         plot         0           ML01         15-Apr-11         54         J         265389         6654226         -30.23071         137.92292         Muloorina         plot         1           MA01         7-Apr-11         53         J         762643         677792         -29.24371         137.98637         Muloorina         plot         1           MA03         17-Apr-11         54         J                                                                                                                                                                                     |       | •         |    |   |        |         |           |           |              | •             |   |
| W013         14-Apr-11         54         J         375707         6664662         -30.23325         139.70831         Wooltana         plot         1           NM01         14-Apr-11         54         J         383808         6701530         -29.8112         139.87863         Muraphorie         plot         1           W014         15-Apr-11         54         J         381631         6673901         -30.11851         139.87199         Uoatnaa         plot         0           ML01         15-Apr-11         54         J         306590         6673981         -30.4202         138.93167         Mt Lyndhurst         plot         0           ML01         15-Apr-11         53         J         785969         664226         -30.22054         318.54654         Mt Lyndhurst         plot         0           MA02         17-Apr-11         53         J         762643         6777394         -29.09339         137.6986         Muloorina         plot         1           MA04         17-Apr-11         54         J         231694         6800262         -29.81074         139.79859         Mundowina         plot         1           MU03         16-Apr-11         54         J                                                                                                                                                                               |       | •         |    |   |        |         |           |           |              | •             |   |
| W013         14-Apr-11         54         J         373794         6649776         -30.27714         139.86785         Wonlana         plot         1           W014         15-Apr-11         54         J         385831         6667490         -30.11851         139.81489         Wooltana         plot         0           W1014         15-Apr-11         54         J         305090         6673981         -30.4102         138.357199         plot         0           M101         15-Apr-11         54         J         305090         6673981         -30.2056         138.54654         Mt Lyndhurst         plot         0           MA02         17-Apr-11         53         J         781509         6761684         -29.24237         137.39637         Muloorina         plot         1           MA03         17-Apr-11         53         J         762643         6777944         -29.43237         133.29867         Muloorina         plot         1           MA03         17-Apr-11         54         J         23194         6690262         -29.4311         138.19912         Muloorina         plot         1           MU03         16-Apr-11         54         J         221602                                                                                                                                                                                    |       |           |    |   |        |         |           |           |              | •             |   |
| MN01         14-Åpr-11         54         J         383908         6701530         -29.8112         139.79863         Mumplorie         plot         1           WU02         15-Apr-11         54         J         381733         6723274         -29.61273         139.57199         plot         0           ML01         15-Apr-11         54         J         300590         6673881         -30.04902         138.93167         Mt Lyndhurst         plot         0           ML01         15-Apr-11         53         J         783983         6757329         -29.28107         137.92292         Mulcorina         plot         1           MA02         17-Apr-11         53         J         767130         6769514         -29.17489         137.7467         Mulcorina         plot         1           MA04         17-Apr-11         54         J         231621         6739996         -29.44074         138.2333         Mulcorina         plot         0         1           MA03         17-Apr-11         54         J         231621         6706734         -29.74731         138.19912         Mundowdna         plot         1           MU04         17-Apr-11         54         J         <                                                                                                                                                                             |       |           |    |   |        |         |           |           |              | •             | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | •         |    |   |        |         |           |           |              | •             |   |
| WU02         15-Åpr-11         54         J         361733         6723274         -29.61273         139.57199         plot         0           ML02         16-Åpr-11         54         J         203859         66673981         -30.04902         138.93167         Mt Lyndhurst         plot         0           MA01         17-Åpr-11         53         J         783983         6757329         -29.28107         137.92292         Mulcorina         plot         1           MA02         17-Åpr-11         53         J         762643         6777394         -29.0939         137.6986         Mulcorina         plot         1           MA03         17-Åpr-11         54         J         231621         6708477         -29.7439         137.4767         Mulcorina         plot         0           MU04         16-Åpr-11         54         J         231621         6706473         -29.7431         138.19912         Mundowdna         plot         1           MU04         16-Åpr-11         54         J         24572         6706730         -29.7435         138.4992         Mundowdna         plot         1           MU04         17-Åpr-11         54         J         25162         <                                                                                                                                                                             |       |           |    |   |        |         |           |           |              | •             |   |
| ML01         15-Åpr-11         54         J         300590         6673981         -30.04902         138.54654         Mt Lyndhurst         plot         0           ML02         16-Åpr-11         53         J         783983         6757329         -29.28107         137.9222         Muloorina         plot         1           MA02         17-Åpr-11         53         J         781509         6761684         -29.24237         137.89637         Muloorina         plot         1           MA03         17-Åpr-11         53         J         767131         6769514         -29.17489         137.7667         Muloorina         plot         1           MA05         17-Åpr-11         54         J         231994         6690262         -29.81074         139.79859         Mundowdna         plot         1           MU03         16-Åpr-11         54         J         221963         670547         -29.77217         138.38931         Mundowdna         plot         1         1           MU04         17-Åpr-11         54         J         252272         6703089         -29.77247         138.4299         Mundowdna         plot         1           MU05         17-Åpr-11         54                                                                                                                                                                                |       | •         |    |   |        |         |           |           | vvooltana    | •             |   |
| ML02         16-Apr-11         54         J         263859         6654226         -30.22058         138.54654         Mt Lýndhurst         plot         1           MA02         17-Apr-11         53         J         781509         6761684         -29.24237         137.89637         Mulcorina         plot         1           MA03         17-Apr-11         53         J         762643         6777994         -29.09339         137.6986         Mulcorina         plot         1           MA04         17-Apr-11         54         J         231621         6739956         -29.44074         138.2333         Mulcorina         plot         0           MU01         16-Apr-11         54         J         231621         6708774         -29.7435         138.36931         Mundowdna         plot         1           MU03         16-Apr-11         54         J         247431         6703550         -29.77217         138.38932         Mundowdna         plot         1         1           MU04         17-Apr-11         54         J         255677         671849         248298         Mundowdna         plot         1           MU05         17-Apr-11         54         J         2                                                                                                                                                                                 |       |           |    |   |        |         |           |           |              | •             |   |
| MA01         17-Åpr-11         53         J         783983         6757329         -29.28107         137.92827         Muloorina         plot         1           MA02         17-Åpr-11         53         J         78169         6761684         -29.24237         137.89637         Muloorina         plot         1           MA04         17-Åpr-11         53         J         767131         6769514         -29.17489         137.76966         Muloorina         plot         1           MA04         17-Åpr-11         54         J         231621         67793996         -29.44074         138.2333         Muloorina         plot         0           MU01         16-Åpr-11         54         J         231994         6690262         -29.44074         138.2939         Mundowdna         plot         0           MU03         18-Åpr-11         54         J         24572         6706784         -29.7435         138.39931         Mundowdna         plot         0         1           MU05         17-Åpr-11         54         J         25572         6703089         -29.76768         138.4299         Mundowdna         plot         0         1         1         0         1         1                                                                                                                                                                               |       | •         |    |   |        |         |           |           |              | •             |   |
| MA02         17-Åpr-11         53         J         781609         6761684         -29.24237         137.8687         Muloorina         plot         1           MA03         17-Åpr-11         53         J         762643         6777994         -29.09339         137.6886         Muloorina         plot         1           MA04         17-Åpr-11         54         J         231621         6739986         -29.17489         137.7467         Muloorina         plot         0           MU01         16-Åpr-11         54         J         231621         6708977         -29.72431         138.19912         Mundowdna         plot         1           MU03         18-Åpr-11         54         J         245572         6706734         -29.7217         138.38902         Mundowdna         plot         0           MU04         17-Åpr-11         54         J         251502         6704188         -29.76768         138.4299         Mundowdna         plot         0           MU06         17-Åpr-11         54         J         255577         6713498         -29.67312         138.42996         Mundowdna         plot         0           MU09         17-Åpr-11         54         J                                                                                                                                                                                    |       | •         |    |   |        |         |           |           |              | •             |   |
| MA03         17-Apr-11         53         J         762E43         677794         -29.0939         137.6966         Muloorina         plot         1           MA04         17-Apr-11         53         J         767131         6769514         -29.17489         137.7467         Muloorina         plot         0           MU01         16-Apr-11         54         J         231621         670996         -29.44074         138.2835         Mundowdna         plot         0           MU02         16-Apr-11         54         J         24731         6708477         -29.72431         138.36931         Mundowdna         plot         1           MU03         17-Apr-11         54         J         247431         6703550         -29.77217         138.36931         Mundowdna         plot         0           MU05         17-Apr-11         54         J         255577         6713498         -29.76768         138.42938         Mundowdna         plot         0           MU08         17-Apr-11         54         J         251527         6713498         -29.67678         138.42938         Mundowdna         plot         0           MU08         17-Apr-11         54         J                                                                                                                                                                                      |       |           |    |   |        |         |           |           |              | •             |   |
| MA04         17-Apr-11         53         J         767131         6769514         -29.17489         137.747         Muloorina         plot         1           MA05         17-Apr-11         54         J         231621         6739996         -29.44074         138.2333         Muloorina         plot         0           MU01         16-Apr-11         54         J         229063         6708477         -29.74231         138.19812         Mundowdna         plot         1           MU03         18-Apr-11         54         J         245572         6706734         -29.77217         138.38902         Mundowdna         plot         1           MU04         17-Apr-11         54         J         251502         6704188         -29.76768         138.4299         Mundowdna         plot         0           MU06         17-Apr-11         54         J         256423         671090         -29.70734         138.4299         Mundowdna         plot         0           MU09         17-Apr-11         54         J         25162         6714602         -29.67731         138.4299         Mundowdna         plot         0           MU09         17-Apr-11         54         J         <                                                                                                                                                                             |       |           |    |   |        |         |           |           |              | •             |   |
| MA05       17-Apr-11       54       J       231621       6739996       -29.44074       138.2333       Muloorina       plot       0         MU01       16-Apr-11       54       J       231994       6690262       -29.84074       139.79859       Mundowdna       plot       0         MU02       16-Apr-11       54       J       245572       6706734       -29.72435       138.69911       Mundowdna       plot       1         MU03       18-Apr-11       54       J       245572       6706734       -29.77475       138.38902       Mundowdna       plot       0         MU05       17-Apr-11       54       J       251502       6704188       -29.76768       138.4293       Mundowdna       plot       0         MU06       17-Apr-11       54       J       255577       6713498       -29.676768       138.4293       Mundowdna       plot       0         MU08       17-Apr-11       54       J       255577       6713498       -29.6791       138.4299       Mundowdna       plot       0         MU09       17-Apr-11       54       J       25152       6716241       -29.67312       138.42996       Mundowdna       plot       0                                                                                                                                                                                                                                                      |       |           |    |   |        |         |           |           |              | •             |   |
| MU01       16-Apr-11       54       J       23194       6690262       -29.81074       138.19912       Mundowdna       plot       0         MU02       16-Apr-11       54       J       229063       6708477       -29.7431       138.19912       Mundowdna       plot       1         MU04       17-Apr-11       54       J       245572       6706734       -29.74251       138.36931       Mundowdna       plot       1         MU05       17-Apr-11       54       J       247431       6703550       -29.76768       138.4299       Mundowdna       plot       0         MU06       17-Apr-11       54       J       251252       6703089       -29.76768       138.4299       Mundowdna       plot       0         MU08       17-Apr-11       54       J       251262       6719348       -29.67312       138.4299       Mundowdna       plot       0         MU09       17-Apr-11       54       J       248166       6714602       -29.67312       138.34966       Fairina       plot       0         MU10       17-Apr-11       54       J       248076       6864704       -30.26843       138.4299       Mundowdna       plot       1                                                                                                                                                                                                                                                         |       |           |    |   |        |         |           |           |              | •             |   |
| MU02       16-Åpr-11       54       J       229063       6708477       -29.72431       138.19912       Mundowdna       plot       1         MU03       18-Åpr-11       54       J       24572       6706734       -29.77435       138.38931       Mundowdna       plot       1         MU04       17-Åpr-11       54       J       251502       6704188       -29.76768       138.4293       Mundowdna       plot       0         MU06       17-Åpr-11       54       J       255272       6710990       -29.7774       138.34293       Mundowdna       plot       0         MU07       17-Åpr-11       54       J       255277       6713498       -29.66791       138.4293       Mundowdna       plot       0         MU08       17-Åpr-11       54       J       245126       6714602       -29.67312       138.34996       Mundowdna       plot       0         MU10       17-Åpr-11       54       J       245127       6648496       -30.267312       138.39785       Mundowdna       plot       1         MU20       17-Åpr-11       54       J       245027       6648496       -30.2621       138.28233       Farina       plot       0                                                                                                                                                                                                                                                        |       |           |    |   |        |         |           |           |              | •             |   |
| MU03       18-Åpr-11       54       J       245572       6706734       -29.7435       138.36931       Mundowdna       plot+trap grid       1         MU04       17-Apr-11       54       J       247431       6703550       -29.77217       138.38902       Mundowdna       plot       1         MU05       17-Apr-11       54       J       252272       6703089       -29.76768       138.42938       Mundowdna       plot       0         MU06       17-Apr-11       54       J       255277       6713090       -29.70734       138.42298       Mundowdna       plot       0         MU08       17-Apr-11       54       J       255277       6713049       -29.6739       138.42296       Mundowdna       plot       0         MU09       17-Apr-11       54       J       226140       670527       -29.72593       138.14296       Mundowdna       plot       0         MU10       17-Apr-11       54       J       226140       67027       -29.72593       138.14296       Mundowdna       plot       0         MU10       17-Apr-11       54       J       2245027       6648496       -30.26843       138.1267       138.17065       specimen                                                                                                                                                                                                                                                |       | •         |    |   |        |         |           |           |              | •             |   |
| MU04       17-Åpr-11       54       J       247431       6703550       -29.77217       138.38902       Mundowdna       plot       1         MU05       17-Apr-11       54       J       251502       6704188       -29.76768       138.4299       Mundowdna       plot       0         MU06       17-Apr-11       54       J       252577       6713498       -29.76768       138.4299       Mundowdna       plot       0         MU08       17-Apr-11       54       J       255577       6713498       -29.68456       138.47412       Mundowdna       plot       0         MU08       17-Apr-11       54       J       251622       6715241       -29.667312       138.34765       Mundowdna       plot       0         MU10       17-Apr-11       54       J       248166       6714602       -29.67312       138.39785       Mundowdna       plot       1         MU20       17-Apr-11       54       J       248027       648496       -30.09922       138.23966       Farina       plot       0         FA02       18-Apr-11       54       J       354567       6474316       -31.85762       139.46276       specimen       1       Specimen <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>                                                                                                                                   |       | •         |    |   |        |         |           |           |              | •             |   |
| MU05       17-Apr-11       54       J       251502       6704188       -29.76768       138.4299       Mundowdna       plot       0         MU06       17-Apr-11       54       J       252272       6703089       -29.76768       138.4293       Mundowdna       plot       0         MU07       17-Apr-11       54       J       256423       671090       -29.76768       138.4293       Mundowdna       plot       1         MU08       17-Apr-11       54       J       255577       6713498       -29.66799       138.42996       Mundowdna       plot       0         MU00       17-Apr-11       54       J       2281262       6715241       -29.67312       138.39785       Mundowdna       plot       1         MU20       17-Apr-11       54       J       2281027       6648496       -30.26843       138.39785       Mundowdna       plot       1         FA02       18-Apr-11       54       J       248027       6648496       -30.26843       138.39765       Farina       plot       0         DHM01       9-Apr-11       54       J       458576       6474316       -31.85762       139.46276       specimen       1                                                                                                                                                                                                                                                                  |       |           |    |   |        |         |           |           |              |               |   |
| MU06       17-Apr-11       54       J       252272       6703089       -29.76768       138.42938       Mundowdna       plot       0         MU07       17-Apr-11       54       J       2256423       6710990       -29.70734       138.48229       Mundowdna       plot       0         MU08       17-Apr-11       54       J       2251262       6713498       -29.66799       138.42996       Mundowdna       plot       0         MU10       17-Apr-11       54       J       225162       6715241       -29.66799       138.42996       Mundowdna       plot       0         MU10       17-Apr-11       54       J       228194       6708277       -29.67312       138.39785       Mundowdna       plot       1         FA01       18-Apr-11       54       J       228194       6708277       -29.72593       138.19009       Mundowdna       plot       0         FA02       18-Apr-11       54       J       238099       6667104       -30.09922       138.28233       Farina       plot       0         DHM01       9-Apr-11       54       J       48876       64485771       -31.67863       140.26706       spotlight obs       1                                                                                                                                                                                                                                                         |       | •         |    |   |        |         |           |           |              | •             |   |
| MU07       17-Apr-11       54       J       256423       6710990       -29.70734       138.48229       Mundowdna       plot       1         MU08       17-Apr-11       54       J       255577       6713498       -29.66799       138.47412       Mundowdna       plot       0         MU09       17-Apr-11       54       J       251262       6715241       -29.66799       138.47412       Mundowdna       plot       0         MU10       17-Apr-11       54       J       248166       6714602       -29.67312       138.39785       Mundowdna       plot       1         MU20       17-Apr-11       54       J       248166       6714602       -29.67312       138.39785       Mundowdna       plot       1         MU20       17-Apr-11       54       J       245027       6648496       -30.26843       138.34966       Farina       plot       0         FA02       18-Apr-11       54       J       248076       6667104       -30.09922       138.28233       Farina       plot       0         DHM01       9-Apr-11       54       J       488076       6471316       -31.8762       139.46276       spotlightobs       1                                                                                                                                                                                                                                                                |       |           |    |   |        |         |           |           |              | •             |   |
| MU08       17-Apr-11       54       J       255577       6713498       -29.68456       138.47412       Mundowdna       plot       0         MU09       17-Apr-11       54       J       251262       6715241       -29.66799       138.42996       Mundowdna       plot       0         MU10       17-Apr-11       54       J       248166       6714602       -29.67312       138.39785       Mundowdna       plot       1         MU20       17-Apr-11       54       J       248166       6714602       -29.72593       138.1909       Mundowdna       plot       1         FA01       18-Apr-11       54       J       245027       6648496       -30.26843       138.34966       Farina       plot       0         FA02       18-Apr-11       54       J       245027       6647104       -30.09922       138.28233       Farina       plot       0         DHM01       9-Apr-11       54       J       48876       647316       -31.85762       139.46276       specimen       1         S01       8-Apr-11       54       J       48956       6495151       -31.67831       140.8487       spotlight obs       1         S02 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></t<>                                                                                                                                                 |       |           |    |   |        |         |           |           |              | •             |   |
| MU09       17-Apr-11       54       J       251262       6715241       -29.66799       138.42996       Mundowdna       plot       0         MU10       17-Apr-11       54       J       248166       6714602       -29.67312       138.39785       Mundowdna       plot       1         MU20       17-Apr-11       54       J       2281027       6648496       -30.26843       138.34966       Farina       plot       0         FA01       18-Apr-11       54       J       228099       6667104       -30.26843       138.34966       Farina       plot       0         FA02       18-Apr-11       54       J       238099       6667104       -30.09922       138.28233       Farina       plot       0         DHM01       9-Apr-11       54       J       354567       6474316       -31.85762       139.46276       specimen       1         S01       8-Apr-11       54       J       48907       6485771       -31.76351       140.8487       spotlight obs       1         S02       8-Apr-11       54       J       427510       6470324       -31.90075       140.25493       spotlight obs       1         S03       9-Apr-11                                                                                                                                                                                                                                                              |       | •         |    |   |        |         |           |           |              | •             |   |
| MU10       17-Apr-11       54       J       248166       6714602       -29.67312       138.39785       Mundowdna       plot       1         MU20       17-Apr-11       54       J       228194       6708277       -29.72593       138.19009       Mundowdna       plot       1         FA01       18-Apr-11       54       J       228097       6648496       -30.26843       138.34966       Farina       plot       0         FA02       18-Apr-11       54       J       245027       6474316       -30.09922       138.28233       Farina       plot       0         DHM01       9-Apr-11       54       J       488761       6502448       -31.61267       140.67065       specimen       1         S01       8-Apr-11       54       J       488097       6485771       -31.76351       140.84128       spotlight obs       1         S03       9-Apr-11       54       J       429547       6470324       -31.9075       140.25493       spotlight obs       1         S04       9-Apr-11       54       J       427510       6471177       -31.88292       140.23274       spotlight obs       1         S05       9-Apr-11       54 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>                                                                                                                                            |       |           |    |   |        |         |           |           |              | •             |   |
| MU2017-Apr-1154J2281946708277-29.72593138.19009Mundowdnaplot1FA0118-Apr-1154J2450276648496-30.26843138.34966Farinaplot0FA0218-Apr-1154J2380996667104-30.09922138.28233Farinaplot0DHM019-Apr-1154J3545676474316-31.85762139.46276specimen1S018-Apr-1154J3545676474316-31.85762139.46276specimen1S028-Apr-1154J4890976485771-31.67883140.84128spotlight obs1S039-Apr-1154J4295476470324-31.90075140.25493spotlight obs1S049-Apr-1154J4275106471177-31.8822140.23227spotlight obs1S059-Apr-1154J4279136470742-31.89061140.23274spotlight obs1S069-Apr-1154J4279136470742-31.89687140.23767spotlight obs1S079-Apr-1154J35451464704210-31.90181140.26102spotlight obs1S089-Apr-1154J355732647364-31.86721139.46191spotlight obs1S089-Apr-1154J355732647364-31.86455139.47495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | •         |    |   |        |         |           |           |              | •             |   |
| FA0118-Apr-1154J245027 $6648496$ -30.26843138.34966Farinaplot0FA0218-Apr-1154J238099 $6667104$ -30.09922138.28233Farinaplot0DHM019-Apr-1154J468761 $6502448$ -31.61267140.67065specimen1DHM0210-Apr-1154J354567 $6474316$ -31.85762139.46276specimen1S018-Apr-1154J489097 $6485771$ -31.76351140.84128spotlight obs1S028-Apr-1154J429547 $6470324$ -31.90075140.25493spotlight obs1S039-Apr-1154J427510 $6471177$ -31.88229140.23244spotlight obs1S049-Apr-1154J427510 $6471177$ -31.89061140.23274spotlight obs1S059-Apr-1154J42741 $6470210$ -31.90181140.231767spotlight obs1S069-Apr-1154J427446-31.87448139.46191spotlight obs1S079-Apr-1154J354514 $6470210$ -31.90181140.26102spotlight obs1S089-Apr-1154J355732 $6473564$ -31.86455139.47495spotlight obs1S1010-Apr-1154J355732 $6473664$ -31.86455139.47495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | •         |    |   |        |         |           |           |              | •             |   |
| FA0218-Apr-1154J2380996667104-30.09922138.28233Farinaplot0DHM019-Apr-1154J4687616502448-31.61267140.67065specimen1DHM0210-Apr-1154J3545676474316-31.85762139.46276specimen1S018-Apr-1154J4890976485771-31.76351140.88487spotlight obs1S028-Apr-1154J4295476470324-31.90075140.25493spotlight obs1S039-Apr-1154J4275106471177-31.88628140.23227spotlight obs1S049-Apr-1154J4279336471912-31.89681140.23274spotlight obs1S059-Apr-1154J4279136470742-31.89061140.23274spotlight obs1S069-Apr-1154J4279136470742-31.89687140.23767spotlight obs1S079-Apr-1154J4279136470424-31.89687140.23767spotlight obs1S089-Apr-1154J35514647246-31.87448139.46191spotlight obs1S1010-Apr-1154J3557326473564-31.86455139.47495spotlight obs1S1110-Apr-1154J3021096549538-31.16163138.94485tracks <td< td=""><td></td><td></td><td></td><td></td><td></td><td>6648496</td><td></td><td></td><td></td><td>•</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |           |    |   |        | 6648496 |           |           |              | •             |   |
| DHM019-Apr-1154J4687616502448-31.61267140.67065specimen1DHM0210-Apr-1154J3545676474316-31.85762139.46276specimen1S018-Apr-1154J4890976485771-31.76351140.88487spotlight obs1S028-Apr-1154J4899566495151-31.67883140.84128spotlight obs1S039-Apr-1154J4295476470324-31.80755140.25493spotlight obs1S049-Apr-1154J4275106471177-31.89292140.23344spotlight obs1S059-Apr-1154J4279136470742-31.89687140.23274spotlight obs1S069-Apr-1154J4279136470742-31.89687140.23767spotlight obs1S079-Apr-1154J4301246470210-31.90181140.26102spotlight obs1S089-Apr-1154J3545146472446-31.87448139.46191spotlight obs1S0910-Apr-1154J3557326473514-31.8655139.47495spotlight obs1S1110-Apr-1154J3041156550667-31.16163138.94485tracks1S1110-Apr-1154J3041156550667-31.16163138.94485tracks1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |    |   | 238099 | 6667104 |           |           |              | •             |   |
| S01       8-Apr-11       54       J       489097       6485771       -31.76351       140.88487       spotlight obs       1         S02       8-Apr-11       54       J       484956       6495151       -31.67833       140.84128       spotlight obs       1         S03       9-Apr-11       54       J       429547       6470324       -31.90075       140.25493       spotlight obs       1         S04       9-Apr-11       54       J       427510       6471177       -31.89292       140.23344       spotlight obs       1         S05       9-Apr-11       54       J       427393       6471912       -31.88628       140.23227       spotlight obs       1         S06       9-Apr-11       54       J       427913       6470742       -31.89061       140.23274       spotlight obs       1         S07       9-Apr-11       54       J       427913       6470742       -31.89687       140.23767       spotlight obs       1         S08       9-Apr-11       54       J       430124       6470210       -31.90181       140.26102       spotlight obs       1         S09       10-Apr-11       54       J       355732       6473564 <td>DHM01</td> <td></td> <td>54</td> <td></td> <td>468761</td> <td>6502448</td> <td></td> <td></td> <td></td> <td>•</td> <td>1</td>                                                                                                             | DHM01 |           | 54 |   | 468761 | 6502448 |           |           |              | •             | 1 |
| S02       8-Apr-11       54       J       484956       6495151       -31.67883       140.84128       spotlight obs       1         S03       9-Apr-11       54       J       429547       6470324       -31.90075       140.25493       spotlight obs       1         S04       9-Apr-11       54       J       427510       6471177       -31.89292       140.23344       spotlight obs       1         S05       9-Apr-11       54       J       427393       6471912       -31.88628       140.23227       spotlight obs       1         S06       9-Apr-11       54       J       427913       6470742       -31.89687       140.23274       spotlight obs       1         S07       9-Apr-11       54       J       427913       6470742       -31.89687       140.23767       spotlight obs       1         S08       9-Apr-11       54       J       420124       6470210       -31.90181       140.26102       spotlight obs       1         S09       10-Apr-11       54       J       354514       6472466       -31.87448       139.46191       spotlight obs       1         S10       10-Apr-11       54       J       355732       6473514 </td <td>DHM02</td> <td>10-Apr-11</td> <td>54</td> <td>J</td> <td>354567</td> <td>6474316</td> <td>-31.85762</td> <td>139.46276</td> <td></td> <td>specimen</td> <td>1</td>                                                                    | DHM02 | 10-Apr-11 | 54 | J | 354567 | 6474316 | -31.85762 | 139.46276 |              | specimen      | 1 |
| S03       9-Apr-11       54       J       429547       6470324       -31.90075       140.25493       spotlight obs       1         S04       9-Apr-11       54       J       427510       6471177       -31.89292       140.23344       spotlight obs       1         S05       9-Apr-11       54       J       427393       6471912       -31.8828       140.23227       spotlight obs       1         S06       9-Apr-11       54       J       427441       6471432       -31.89061       140.23274       spotlight obs       1         S07       9-Apr-11       54       J       427913       6470742       -31.89687       140.23767       spotlight obs       1         S08       9-Apr-11       54       J       427913       6470742       -31.89687       140.23767       spotlight obs       1         S08       9-Apr-11       54       J       430124       6470210       -31.90181       140.26102       spotlight obs       1         S09       10-Apr-11       54       J       354514       6472466       -31.86721       139.50627       spotlight obs       1         S10       10-Apr-11       54       J       304115       6550667 <td>S01</td> <td>8-Apr-11</td> <td>54</td> <td>J</td> <td>489097</td> <td>6485771</td> <td>-31.76351</td> <td>140.88487</td> <td></td> <td>spotlight obs</td> <td>1</td>                                                                        | S01   | 8-Apr-11  | 54 | J | 489097 | 6485771 | -31.76351 | 140.88487 |              | spotlight obs | 1 |
| S03       9-Apr-11       54       J       429547       6470324       -31.90075       140.25493       spotlight obs       1         S04       9-Apr-11       54       J       427510       6471177       -31.89292       140.23344       spotlight obs       1         S05       9-Apr-11       54       J       427393       6471912       -31.8828       140.23227       spotlight obs       1         S06       9-Apr-11       54       J       427441       6471432       -31.89061       140.23274       spotlight obs       1         S07       9-Apr-11       54       J       427913       6470742       -31.89687       140.23767       spotlight obs       1         S08       9-Apr-11       54       J       427913       6470742       -31.89687       140.23767       spotlight obs       1         S08       9-Apr-11       54       J       430124       6470210       -31.90181       140.26102       spotlight obs       1         S09       10-Apr-11       54       J       354514       6472466       -31.86721       139.50627       spotlight obs       1         S10       10-Apr-11       54       J       304115       6550667 <td>S02</td> <td>8-Apr-11</td> <td>54</td> <td>J</td> <td>484956</td> <td>6495151</td> <td>-31.67883</td> <td>140.84128</td> <td></td> <td>spotlight obs</td> <td>1</td>                                                                        | S02   | 8-Apr-11  | 54 | J | 484956 | 6495151 | -31.67883 | 140.84128 |              | spotlight obs | 1 |
| S059-Apr-1154J4273936471912-31.88628140.23227spotlight obs1S069-Apr-1154J4274416471432-31.89061140.23274spotlight obs1S079-Apr-1154J4279136470742-31.89687140.23767spotlight obs1S089-Apr-1154J4301246470210-31.90181140.26102spotlight obs1S0910-Apr-1154J3545146472446-31.87448139.46191spotlight obs1S1010-Apr-1154J3557326473564-31.86721139.50627spotlight obs1S1110-Apr-1154J3041156550667-31.16163138.94485tracks1T0112-Apr-1154J3021096549538-31.17147138.92359tracks1T0312-Apr-1154J3014506548298-31.18254139.1643tracks1T0513-Apr-1154J3515746600778-30.71661139.44991tracks1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S03   |           | 54 | J | 429547 |         | -31.90075 | 140.25493 |              |               |   |
| S06       9-Apr-11       54       J       427441       6471432       -31.89061       140.23274       spotlight obs       1         S07       9-Apr-11       54       J       427913       6470742       -31.89687       140.23767       spotlight obs       1         S08       9-Apr-11       54       J       420124       6470210       -31.90181       140.23767       spotlight obs       1         S09       10-Apr-11       54       J       354514       6470246       -31.87448       139.46191       spotlight obs       1         S10       10-Apr-11       54       J       3545732       6473564       -31.86721       139.50627       spotlight obs       1         S11       10-Apr-11       54       J       355732       6473564       -31.86455       139.47495       spotlight obs       1         T01       12-Apr-11       54       J       304115       6550667       -31.16163       138.94485       tracks       1         T02       12-Apr-11       54       J       302109       6549538       -31.17147       138.92359       tracks       1         T03       12-Apr-11       54       J       301450       6548298                                                                                                                                                                                                                                                         | S04   | 9-Apr-11  | 54 | J | 427510 | 6471177 | -31.89292 | 140.23344 |              | spotlight obs | 1 |
| S079-Apr-1154J4279136470742-31.89687140.23767spotlight obs1S089-Apr-1154J4301246470210-31.90181140.26102spotlight obs1S0910-Apr-1154J3545146472446-31.87448139.46191spotlight obs1S1010-Apr-1154J3586996473311-31.86721139.50627spotlight obs1S1110-Apr-1154J3557326473564-31.86455139.47495spotlight obs1T0112-Apr-1154J3021096549538-31.16163138.94485tracks1T0212-Apr-1154J3014506548298-31.18254138.91643tracks1T0312-Apr-1154J3515746600778-30.71661139.44991tracks1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 9-Apr-11  | 54 | J | 427393 |         | -31.88628 | 140.23227 |              |               | 1 |
| S08       9-Apr-11       54       J       430124       6470210       -31.90181       140.26102       spotlight obs       1         S09       10-Apr-11       54       J       354514       6472446       -31.87448       139.46191       spotlight obs       1         S10       10-Apr-11       54       J       358699       6473311       -31.86721       139.50627       spotlight obs       1         S11       10-Apr-11       54       J       355732       6473564       -31.86455       139.47495       spotlight obs       1         T01       12-Apr-11       54       J       302109       6549538       -31.16163       138.94485       tracks       1         T02       12-Apr-11       54       J       302109       6549538       -31.17147       138.92359       tracks       1         T03       12-Apr-11       54       J       301450       6548298       -31.18254       138.91643       tracks       1         T05       13-Apr-11       54       J       351574       6600778       -30.71661       139.44991       tracks       1                                                                                                                                                                                                                                                                                                                                              |       | 9-Apr-11  | 54 | J |        |         | -31.89061 |           |              |               | 1 |
| S0910-Apr-1154J3545146472446-31.87448139.46191spotlight obs1S1010-Apr-1154J3586996473311-31.86721139.50627spotlight obs1S1110-Apr-1154J3557326473564-31.86455139.47495spotlight obs1T0112-Apr-1154J3041156550667-31.16163138.94485tracks1T0212-Apr-1154J3021096549538-31.17147138.92359tracks1T0312-Apr-1154J3014506548298-31.18254138.91643tracks1T0513-Apr-1154J3515746600778-30.71661139.44991tracks1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |    |   |        |         |           |           |              |               |   |
| S10       10-Apr-11       54       J       358699       6473311       -31.86721       139.50627       spotlight obs       1         S11       10-Apr-11       54       J       355732       6473564       -31.86455       139.47495       spotlight obs       1         T01       12-Apr-11       54       J       304115       6550667       -31.16163       138.94485       tracks       1         T02       12-Apr-11       54       J       302109       6549538       -31.17147       138.92359       tracks       1         T03       12-Apr-11       54       J       301450       6548298       -31.18254       138.91643       tracks       1         T05       13-Apr-11       54       J       351574       6600778       -30.71661       139.44991       tracks       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           |    |   |        |         |           |           |              |               |   |
| S1110-Apr-1154J3557326473564-31.86455139.47495spotlight obs1T0112-Apr-1154J3041156550667-31.16163138.94485tracks1T0212-Apr-1154J3021096549538-31.17147138.92359tracks1T0312-Apr-1154J3014506548298-31.18254138.91643tracks1T0513-Apr-1154J3515746600778-30.71661139.44991tracks1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           |    |   |        |         |           |           |              |               |   |
| T0112-Apr-1154J3041156550667-31.16163138.94485tracks1T0212-Apr-1154J3021096549538-31.17147138.92359tracks1T0312-Apr-1154J3014506548298-31.18254138.91643tracks1T0513-Apr-1154J3515746600778-30.71661139.44991tracks1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |           |    |   |        |         |           |           |              |               |   |
| T0212-Apr-1154J3021096549538-31.17147138.92359tracks1T0312-Apr-1154J3014506548298-31.18254138.91643tracks1T0513-Apr-1154J3515746600778-30.71661139.44991tracks1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |    |   |        |         |           |           |              |               |   |
| T03         12-Apr-11         54         J         301450         6548298         -31.18254         138.91643         tracks         1           T05         13-Apr-11         54         J         351574         6600778         -30.71661         139.44991         tracks         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |           |    |   |        |         |           |           |              |               |   |
| T05 13-Apr-11 54 J 351574 6600778 -30.71661 139.44991 tracks 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |           |    |   |        |         |           |           |              |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |    |   |        |         |           |           |              |               |   |
| U15 15-Apr-11 54 J 385543 6696389 -29.85774 139.815 tracks 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |           |    |   |        |         |           |           |              |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 015   | 15-Apr-11 | 54 | J | 385543 | 0090389 | -29.85774 | 139.815   |              | TACKS         | 1 |

