



# SAMDB NRM Region Soil Carbon Baseline Report (for the period 1989-2017)

April 2019



#### Creative Commons Attribution 4.0



© Crown in right of the State of South Australia, Department of Environment, Water and Natural Resources.

#### Cite as

Schapel, A., 2019, SAMDB NRM Region Soil Carbon Baseline Report 1989 - 2017. Natural Resources SA Murray-Darling Basin, Department for Environment and Water.



This project is supported by the South Australian Murray-Darling Basin Natural Resources Management Board through funding from the Australian Government's National Landcare Program and the NRM levies

This project is supported by Department for Environment and Water, Conservation, NRM, & Protected Area Policy through funding of methodology development for determining the soil organic carbon baseline and determination of stocks in South Australia's Agricultural Soils; the Science and Information Group through provision of soil carbon maps.

#### For further details contact

Tony Randall Natural Resources SA Murray-Darling Basin Department for Environment and Water 110A Mannum Rd, Murray Bridge, South Australia, 5253. Phone: (08) 8532 9101 Amanda Schapel Rural Solutions SA Primary Industries and Regions SA 571 Research Rd, Nuriootpa, South Australia, 5355 Phone: 0411 137 258

Website: http://www.naturalresources.sa.gov.au/samurraydarlingbasin

Public I1-A2

# Contents

| 1   | Exe   | cutive Summary                                                                   | 3  |  |  |  |  |  |  |  |  |  |
|-----|-------|----------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|
| 2   | Intro | oduction                                                                         | 4  |  |  |  |  |  |  |  |  |  |
| 3   | Bac   | kground                                                                          | 5  |  |  |  |  |  |  |  |  |  |
| 3.1 | Con   | nparison of combined dataset to State Soil Database - SSLIF                      | 6  |  |  |  |  |  |  |  |  |  |
| 4   | Soil  | Carbon Resource and Condition                                                    | 7  |  |  |  |  |  |  |  |  |  |
| 4.1 | Reg   | Regional Carbon Stock Maps - State Soil and Land Information Framework7          |    |  |  |  |  |  |  |  |  |  |
| 4.2 | Base  | eline and trends of soil carbon levels                                           | 9  |  |  |  |  |  |  |  |  |  |
|     | 4.2.1 | Time                                                                             | 9  |  |  |  |  |  |  |  |  |  |
|     | 4.2.2 | Texture                                                                          | 11 |  |  |  |  |  |  |  |  |  |
|     | 4.2.3 | Texture x soil depth                                                             | 12 |  |  |  |  |  |  |  |  |  |
|     | 4.2.4 | Soil Carbon by agricultural industry / land use                                  | 13 |  |  |  |  |  |  |  |  |  |
|     | 4.2.5 | Rainfall / Postcode                                                              | 14 |  |  |  |  |  |  |  |  |  |
| 4.3 | Disc  | cussion of factors                                                               | 16 |  |  |  |  |  |  |  |  |  |
|     | 4.3.1 | Influencing factors                                                              | 16 |  |  |  |  |  |  |  |  |  |
|     | 4.3.2 | Summarised responses from Department for Environment and Water Landholder Survey | 16 |  |  |  |  |  |  |  |  |  |
| 5   | Clin  | nate Impacts                                                                     | 17 |  |  |  |  |  |  |  |  |  |
| 6   | Key   | Issues and Opportunities for future projects and programs                        | 18 |  |  |  |  |  |  |  |  |  |
| 7   | Con   | Conclusion                                                                       |    |  |  |  |  |  |  |  |  |  |
| 8   | Refe  | erences                                                                          | 19 |  |  |  |  |  |  |  |  |  |
| 9   | Арр   | pendices                                                                         | 20 |  |  |  |  |  |  |  |  |  |

# **1 Executive Summary**

This report establishes a baseline for soil organic carbon (OC) in the South Australian Murray-Darling Basin Natural Resource Management (SAMDB NRM) region. Soil OC levels and proportion of soil samples analysed within low, medium and high OC levels for soil texture, land use and NRM region were defined over time 1989-2017.

Key findings:

#### Soil Texture

Overall, 49% of topsoil samples are in the high, 35% in the moderate and 16% in low OC range.

Average OC for SAMDB topsoil textures

| Sand       | 0.87% |
|------------|-------|
| Loamy sand | 1.26% |
| Sandy loam | 1.86% |
| Loam       | 2.25% |
| Clay loam  | 2.15% |
| Clay       | 2.14% |

#### Land use and NRM District

Pasture has the highest average OC values with the majority of samples (85%) in the high OC range.

The other land uses have lower but similar average OC values. Cropping and vegetables have the greatest proportion of samples (55-59%) in the moderate OC range whilst orchards and vineyards have a large proportion of samples (36%) in the low OC range.

OC values for NRM District are largely influenced by rainfall and land use.

#### Time

Due to sample numbers available for interrogation, there is high confidence in OC results for 1989-2007 but low confidence for >2008. However, OC results post 2008 can be used as a guide to trends.

From the rolling 3 year mean

- 0.07% p.a. increase in OC from 1989-2007
- confirmed increasing OC trend 2008-2017

Over 5 year time frames increasing proportion of samples in the high OC range.

#### **Opportunity to increase OC**

If there are no limitations to rainfall and land use there is potential to increase OC values in:

- sands from the moderate to high range
- clay loam to clays from the low to moderate and moderate to high range
- cropping and vegetable from the moderate to high range
- orchards and vineyards from the low to moderate range and moderate to high range
- subsoil although it can be difficult to influence organic matter inputs at this depth



**Key graphical OC summaries** for soil texture (Figures 7 and 8 in report) and rolling 3 year mean displaying the trend for increasing OC 1989-2007 (Figure 5 in report).

# **2 Introduction**

At the global scale, the most significant threats to soil function are erosion, nutrient imbalance (including acidity) and loss of soil organic carbon (FAO and ITPS, 2015). Many countries use these 'threats' as indicators of soil condition defining the proportion of land below desirable levels.

This report establishes a baseline for soil organic carbon (OC) in the South Australian Murray-Darling Basin Natural Resource Management (SAMDB NRM) region. Soil OC levels and proportion of soil samples analysed within low, medium and high OC levels for soil texture, land use and NRM region were defined over time 1989-2017.

Soil OC provides key ecosystem services including provision of food and fibre, habitats of biodiversity, climate regulation, water filtration and purification (Trivedi *et al.* 2018). Within the soil matrix OC plays a critical role, creating aggregates of soil particles, stabilising structure, increasing water infiltration and overall water holding capacity, storing and releasing nutrients, and improving cation exchange and buffering capacity. Where soils are below a desirable level, increasing soil OC improves soil health, resilience, productivity and offsets greenhouse gas emissions.

The amount of OC in soil is the balance between the rate of input (plant residue, composts or manures) and output  $(CO_2 \text{ release from microbial decomposition, leaching and soil erosion})$ . There are a number of factors that individually or in combination affect the total amount and distribution of OC in the profile, including soil type, climate, topography and soil biota. The potential of a soil to increase OC depends on the possibility of increasing OC inputs so they exceed outputs, the conversion of OC inputs into more stable forms of OC for long-term storage and the capacity of the soil to store more OC (will depend if OC equilibrium has been reached).

The SAMDB NRM region covers more than 5.6 million hectares with approximately 2.5 million hectares of cleared agricultural land. Annual rainfall ranges between 250 and 800+ mm and influences the amount of organic matter that can be grown and incorporated into the soil. In 2008, the major agricultural land uses were grazing of modified pastures (25%), grazing of natural vegetation (21%) and cropping (19%). Irrigated agriculture comprised 2% of the regions land use and occurs adjacent to the Murray River and Angas Bremer catchments in the Eastern Mt Lofty Ranges and parts of the Murray Mallee (SAMDB NRMB, 2015). Soils vary by location but there is a dominance of sandy textured surface soils covering 66% of the area (1.7 million hectares).

The amount of stored OC varies among soil types and is largely due to the clay concentration that influences the capacity for plant productivity and protection of OC from microbial breakdown (Baldock and Skjemstad 1999). Therefore, lighter texture surface soil (sand to sandy loam) is expected to have lower OC values than heavier textured soil (loam to clay).

# 3 Background

It is difficult to identify changes to soil organic carbon in the absence of long-term soil monitoring sites. Interrogation of soil analyses results can provide substitute organic carbon (OC) baseline and condition indicators.

Due to the absence of long-term soil monitoring sites in the SAMDB NRM region, soil analytical results predominantly from the State Government's Analytical Crop Management Laboratory (ACML) service (1989-2007), along with results from private companies and NRM projects, were collated into a single dataset<sup>1</sup>. Selection of suitable data was based on records with OC, postcode<sup>2</sup>, sampling date, sampling depth and where recorded included soil texture and land use. Duplicate records were identified and removed.

OC analysis was by wet oxidation, Walkley Black method - the most common test offered by laboratories in Australia. This test provides an approximate measure of soil organic carbon (SOC) due to an incomplete reaction in the oxidation of the organic matter (~80% of TOC). However, it does not measure inorganic carbonates (inorganic C) that is often present in South Australian soils. High concentrations of inorganic C can make small changes in OC difficult to detect. The use of catalysed, high temperature combustion (Leco) is a requirement to measure soil C under the Carbon Farming Initiative (Australian Government 2018). However, this analytical method measures carbonates. Chemically removing carbonates increases the accuracy of the TOC measurement but is time consuming, costly and not commercially available.

Attributing baseline OC levels based on laboratory analysis introduces uncertainty due to different methods of sample collection, potential contamination of samples, use of different laboratories etc. However, the large number of samples from the ACML dataset<sup>3</sup> counteract the uncertainties resulting in high confidence in the baseline OC results (1989-2007). Alternatively, the accuracy of results collected from project areas<sup>4</sup> is high, however the small number of samples from this dataset, particularly from 2008, lead to low confidence that they are representative of the whole NRM region and consequently cannot be used for baseline figures over time. However, there is confidence that the data can be included for baseline values by soil type and land use and used as a guide for OC trends from 2008.

The combined dataset is robust with 7,395 soil samples with year of sampling recorded, 7,302 samples with soil texture recorded and 6,228 samples with land use recorded. Exploratory analysis determined average, minimum, maximum, 25<sup>th</sup> and 75<sup>th</sup> percentile values per: year, five-year time frame, land use and soil texture. The proportion

<sup>&</sup>lt;sup>1</sup> There are likely to be written records of OC in the SAMDB prior to 1989 from old trial sites however due to time limitations this data was not able to be collated.

<sup>&</sup>lt;sup>2</sup> Postcode was the one field common to the majority of records. However, the postcode could be the landholders postal address rather than the actual location of the property. It would be ideal to spatially represent the data by hundred or similar but unfortunately this level of detail is not available.

<sup>&</sup>lt;sup>3</sup> Dataset characteristics ACML: unknown methods of collecting soil samples which may lead to a bias for OC values eg collection of a 0-5 rather than 0-10 cm sample; more confidence that the high number of samples is representative of the MDB region.

<sup>&</sup>lt;sup>4</sup> Dataset characteristics smaller datasets: more confidence in accuracy of sample collection as most collected for use in projects; lower sample numbers result in uncertainty in representation of the whole MDB region.

of samples within low, moderate and high OC ranges were also determined. Simple linear regression was run to identify factors that explained the variance in OC.

Topsoil was classified as 0-10 cm for cropping and 0-15 cm for horticultural and grazing, 10 or 15-30 cm for subsurface and anything below 30 cm was classified as subsoil.

The greatest number of samples was in the topsoil layer as most soil tests were undertaken to determine macro nutrient concentrations. With greater awareness of the importance of chemical, physical and biological parameters on plant function from subsurface and subsoil layers, samples are increasingly being collected deeper in the soil profile. The low number of samples from subsurface and subsoil provide an indication of trends rather than a baseline for the region.

The Department for Environment and Water's, Science and Information Group provided draft regional soil carbon maps based on data from the State Soil and Land Information Framework (SSLIF) following the methodology in Young *et al.* 2017. These maps are currently under revision and have been included as a guide. The SSLIF is based on soil samples collected in the late 1990's to early 2000's. Topsoil OC values (%) from individual characterisation sites from the SSLIF within the SAMDB region were overlaid on the soil carbon stock map.

High confidence in soil texture and land use OC baseline from 1989-2017.
High confidence in OC baseline values for period between 1989-2007.
Low confidence for baseline OC values over period between 2008-2017 as a result of low number of samples analysed and not representative of the whole region. This data can be used as a guide to trends over time.

### 3.1 Comparison of combined dataset to State Soil Database - SSLIF

Characterisation sites in the state soil program (State Soil and Land Information Framework) have approximately 200 samples (compared to 7302 from laboratories) with the majority within cropping and pasture land uses. Comparison of topsoil samples within the OC range show similar trends for both data sources providing confidence in the results (Figure 1).



**Figure 1.** Comparison in proportion of samples in the high, moderate and low OC range for samples from collated laboratory dataset and state soil and land information framework (SSLIF) characterisation sites.

# **4 Soil Carbon Resource and Condition**

### 4.1 Regional Carbon Stock Maps - State Soil and Land Information Framework

Organic carbon (OC) maps provided by the Department for Environment and Water's, Science and Information Group provide a guide to the soil carbon stocks in the State's agricultural lands. There is large variability in the current OC stock (Figure 2 and Figure 3) in the 0-30 cm depth for the SAMDB NRM region, ranging from 2.5 t/ha (near Loxton) to > 50 t/ha (Eastern slope of the Mt Lofty Ranges within the Ranges to River NRM district). This variability is largely driven by soil texture, rainfall and land use. There is a theoretical opportunity to increase soil carbon stocks up to 15-20 t/ha (Figure 4) particularly in areas east of the Murray River. The opportunity on land west of the Murray River will require further investigation.



**Figure 2.** Calculated OC stock of the surface 0-30 cm overlaid with topsoil OC values (%) from individual characterisation sites from the SSLIF for the SAMDB region.

Source: Department for Environment and Water, Science and Information Group.



**Figure 3.** Calculated OC stock of the surface 0-30 cm from data collected in the SSLIF (1990's-early 2000's). Source: Department for Environment and Water Science and Information Group.



**Figure 4.** Calculated opportunity to increase OC stock in the 0-30 cm. Source: Department for Environment and Water Science and Information Group.

### 4.2 Baseline and trends of soil carbon levels

As a result of the number of samples included in this analysis, there is strong confidence in the OC baseline for soil texture, land use and time frame 1989-2007, but lower confidence for OC baseline for time frame 2008 onwards. When OC trends are displayed over time, data is separated by pre and post 2008 but is not necessary for soil texture or land use.

#### 4.2.1 Time

OC in the topsoil (0-10 or 0-15 cm) show a general increasing trend in OC levels over time (Figure 5). Strong annual fluctuations are evident. To minimise the seasonal effect, the mean of three years of data were used (Figure 6). The rolling three year mean demonstrated an annual OC increase of 0.07% for 1989 to 2007. Although the actual OC values are not accurate for 2008-2017<sup>5</sup>, the trend line also shows an increase over time.

Further interrogation of the dataset over time for soil texture and land use was conducted for 5 year timeframes. There is an increasing trend in OC values over time with an increasing proportion of samples shifting from the low and moderate to high OC range (Figure 7 and Figure 8).



**Figure 5:** Annual topsoil OC trends showing average OC, number of samples, upper (75%) and lower (25%) bands. Data is separated into 1990-2007 where there is high confidence in baseline OC values and 2008-2017 where there is low confidence in baseline due to low sample numbers. However, the trends from post 2008 can be used.

Due to sample numbers available for interrogation, there is high confidence in OC results for 1989-2007 but low confidence for >2008. However, OC results post 2008 can be used as a guide to trends.

From the rolling 3 year mean

- 0.07% p.a. increase in OC from 1989-2007
- confirmed increasing OC trend 2008-2017

Over 5 year time frames increasing proportion of samples in the high OC range.

<sup>5</sup> Due to the low number of laboratory analysis available for this time period



**Figure 6:** Rolling 3 year mean to minimise seasonal effects displaying the trend for increasing OC over time. Data is separated into 1990-2007 where there is high confidence in baseline OC values and 2008-2017 where there is low confidence in baseline due to low sample numbers. However, the trends from post 2008 can be used.



**Figure 7:** Five year OC trends average OC, number of samples, upper (75%) and lower (25%) bands. Data is separated into 1990-2007 where there is high confidence in baseline OC values and 2008-2017 where there is low confidence in baseline due to low sample numbers. However, the trends from post 2008 can be used.



**Figure 8:** Proportion of texture samples in the high, moderate and low OC range over five-year timeframe. Data is separated into 1990-2007 where there is high confidence in baseline OC values and 2008-2017 where there is low confidence in baseline due to low sample numbers. However, the trends from post 2008 can be used.

#### 4.2.2 Texture

Soil texture (clay content) largely determines the potential OC storage in soil. The potential is greater for clay than sandy soils. This is an important consideration for the lighter textured topsoils that make up 66% of the SAMDB NRM region. Therefore, it is critical to consider soil texture when defining OC standards. OC standards for low, medium and high OC ranges exist for the topsoil layer of South Australian agricultural soil (Table 1).

**Table 1**: OC standards for the topsoil layer of South Australian agricultural soil with consideration of soil texture (Standards B. Hughes PIRSA).

|          | Sand to Loamy sand | Sandy loam | Loam      | Clay loam to Clay |
|----------|--------------------|------------|-----------|-------------------|
| Low      | < 0.4              | < 0.6      | < 0.8     | < 1.1             |
| Moderate | 0.5 - 0.9          | 0.7 - 1.3  | 0.9 - 1.7 | 1.2 - 1.9         |
| High     | > 1.0              | > 1.4      | > 1.8     | > 2.0             |

On average for all soil textures (7302 samples) compared to the OC standards with texture considered, approximately half were in the high range (49%) with 35% in the moderate and 16% in the low range (Figure 9). Further analysis by topsoil texture found a similar proportion of topsoil samples in the high OC range for textures loamy sand to clay (~50%). However sand has 26% in the high and 51% in the moderate range and clay loam to clay have 23% in the low and 35% in the moderate range.

If there are no limitations to rainfall and land use there is potential to increase OC values in :

- in sands from the moderate to high range
- in clay loam to clays from the low to moderate, and moderate to high range







**Figure 10:** OC benchmark by texture for all soil depths displaying average OC, number of samples, upper (75%) and lower (25%) bands

As expected, OC values in the whole soil profile increased with increasing texture (clay content). Average OC values were lowest in sand (0.87%) and highest in loams (2.25%) with a plateau or slight decline in OC for clay loam (2.15%) to clay top soil (Figure 10, Appendix Table 2). The lower OC values in the clay loam to clay soils may be influenced by rainfall that is limiting OC inputs to the soil.

#### 4.2.3 Texture x soil depth

Soil depth influences OC values as OC decreases with soil depth. Different factors affect OC in the surface and subsoil, environmental and management factors strongly influence OC in the surface 10 cm whereas soil type and water availability more influential below 20 cm.

Topsoil and subsurface layers have a positive response to OC with increasing clay concentration (texture). The highest OC value is in the loam for the topsoil and clay loam for the subsurface (Figure 11). There is insignificant change to OC values in the subsoil that likely reflects the lower inputs of organic matter to this depth.

There is an opportunity to increase OC values in the subsoil as the soil matrices are not saturated by OC. However, it can be difficult to influence organic matter inputs at this depth particularly in areas where rainfall limits biomass growth and hence organic inputs.



**Figure 11:** OC baseline average OC, number of samples, upper (75%) and lower (25%) bands for soil layers topsoil, subsurface, subsoil and the model of best fit for OC by soil layer.

#### 4.2.4 Soil Carbon by agricultural industry / land use

A review by Sanderman *et al.* (2010) established that under Australian conditions, conversion of native land for agriculture has resulted in 40 to 60% loss of soil OC. Increases in OC have been demonstrated under improved management of cropland<sup>6</sup> (such as improved rotation, adoption of no-till or stubble retention) compared to traditional tillage based management but Sanderman *et al.* state:

- the greatest theoretical potential for C sequestration within existing agricultural systems will likely come from large additions of organic materials (manure, green wastes, biochar), maximising pasture phases in mixed cropping systems, shifting from annual to perennial species in permanent pastures,
- the greatest gains are expected from more radical management shifts such as conversion from cropping to permanent pasture, retirement and restoration of degraded land.

Pasture has the highest average OC values with the majority of samples (85%) in the high OC range (Figure 12 and Figure 13). Cropping and vegetables have similar OC values (but considerably lower than pasture), with the greatest proportion of samples (55-59%) in the moderate OC range. Although the average OC value is similar for orchards and vineyards to cropping and vegetables, there was a greater proportion of samples (36%) in the low OC range.

#### There is an opportunity to:

- maintain but unlikely to significantly increase OC values in pasture
- increase OC in cropping and vegetables through a shift from moderate to high OC range
- increase OC in orchards or vineyards through a shift from low to moderate and moderate to high OC range





**Figure 12:** Proportion of samples in the high, moderate and low OC range for dominant land uses

**Figure 13:** OC baseline average OC, number of samples, upper (75%) and lower (25%) bands for land use

<sup>&</sup>lt;sup>6</sup> Early studies on conserving or increasing soil OC under Australian cropping conditions identified the importance of conservation tillage (e.g. no-till with stubble retention) versus conventional tillage. However, little to no differences in OC were found in areas with rainfall below 500 mm because of limitations to biomass production.

#### 4.2.5 Rainfall / Postcode

Water availability has a major influence on OC inputs in Australia, where both the total amount and distribution of annual rainfall is important. Where water availability is limiting, biomass production is reduced, affecting OC input into soil. Organic matter decomposition is controlled by temperature and water availability and largest changes occur where total annual rainfall is between 400 to 600 mm.

Rainfall data was not available for the samples analysed. However, samples were grouped into postcode and NRM District (Figure 14). The proportion of samples in the OC range for representative postcodes<sup>7</sup> demonstrates the differences that occur in the four NRM Districts (Figure 15). Factors such as rainfall, soil texture and land use will strongly influence OC values.

There is an opportunity to:

- maintain but unlikely to significantly increase OC values in Ranges to River
- increase OC in Rangelands through a shift from moderate to high OC range
- increase OC in Mallee and Coorong through a shift from low to moderate and moderate to high OC range
- increase OC in Riverland through a shift from low to moderate OC range







**Figure 15.** Proportion of representative samples in the high, moderate and low OC range for NRM District

<sup>&</sup>lt;sup>7</sup> Representative postcodes were required to have data for all years 1989-2007

Trends over five year timeframe show variation within NRM Districts that is likely due to seasonal, soil type and land use influences (Table 2). Overall, Ranges to River and Rangelands decrease in proportion of samples in the low OC range whilst increasing the high OC range. Mallee and Coorong and Riverland show a decrease in proportion of samples in the low OC range with an increase in the moderate and high range for 1989-2002 (Figure 16). However from 2003-2007 there is an increase in the proportion of samples in the low OC range.

|                  |          | Pro   | Proportion in Low OC Range |       |       |       |       |       |       |
|------------------|----------|-------|----------------------------|-------|-------|-------|-------|-------|-------|
|                  |          |       | 5 Year Time frame          |       |       |       |       |       |       |
| NRM District     | Postcode | 89-90 | 92-97                      | 98-02 | 03-07 | 89-90 | 92-97 | 98-02 | 03-07 |
| Ranges to River  | 5153     | 67%   | 95%                        | 98%   | 94%   | 0%    | 0%    | 1%    | 0%    |
|                  | 5201     | 100%  | 92%                        | 94%   | 98%   | 0%    | 4%    | 4%    | 2%    |
|                  | 5210     | 100%  | 96%                        | 93%   | 99%   | 0%    | 0%    | 0%    | 0%    |
|                  | 5214     | 50%   | 77%                        | 75%   | 35%   | 50%   | 7%    | 0%    | 17%   |
|                  | 5244     | 67%   | 88%                        | 65%   | 89%   | 0%    | 1%    | 10%   | 2%    |
|                  | 5255     | 0%    | 44%                        | 48%   | 52%   | 38%   | 9%    | 15%   | 13%   |
| Mallee & Coorong | 5261     | 0%    | 55%                        | 51%   | 27%   | 100%  | 6%    | 6%    | 5%    |
|                  | 5264     | 0%    | 58%                        | 63%   | 86%   | 0%    | 1%    | 5%    | 0%    |
|                  | 5302     | 0%    | 43%                        | 11%   | 0%    | 0%    | 21%   | 9%    | 100%  |
|                  | 5304     | 0%    | 8%                         | 12%   | 0%    | 75%   | 28%   | 28%   | 50%   |
| Rangelands       | 5374     | 33%   | 29%                        | 53%   | 13%   | 17%   | 15%   | 0%    | 0%    |
|                  | 5413     | 0%    | 43%                        | 43%   | 82%   | 17%   | 0%    | 0%    | 3%    |
|                  | 5417     | 0%    | 21%                        | 19%   | 33%   | 0%    | 21%   | 19%   | 0%    |
|                  | 5454     | 0%    | 15%                        | 50%   | 0%    | 0%    | 10%   | 0%    | 0%    |
|                  | 5491     | 0%    | 8%                         | 33%   | 50%   | 50%   | 27%   | 11%   | 0%    |
| Riverland        | 5330     | 0%    | 0%                         | 3%    | 1%    | 100%  | 70%   | 30%   | 82%   |
|                  | 5333     | 0%    | 6%                         | 3%    | 17%   | 100%  | 66%   | 69%   | 67%   |

**Table 2.** Proportion of representative samples\* in the high, moderate and low OC range for each NRM region over five year time frame. \* *Only postcodes that had OC ranges for all four time frames are displayed.* 



Figure 16. Proportion of samples in the high, moderate and low OC range for all NRM Districts

### 4.3 Discussion of factors

#### 4.3.1 Influencing factors

Simple regression analysis of the chemical and geographic parameters in the combined dataset highlighted the degree of influence that individual factors exert on OC results. The degree of variance explained by individual factors<sup>8</sup> includes pH<sup>9</sup> (29%), postcode/rainfall (13%), nitrate-nitrogen (13%), phosphorus (8%) and cation exchange capacity (6%). Time and other chemical parameters exert minor influence individually explaining less than 3% of the variance in OC results.

Combining factors pH, phosphorus, nitrate-nitrogen and soil texture explained 50% of the variance in OC results. If soil texture is substituted for land use 57% of the OC variance is explained and 59% when postcode/rainfall is substituted.

This demonstrates there are other factors that explain the remaining 40% of variation in OC results. These factors require further investigation.

#### Factors that influence soil OC include:

- Individually: pH (29%), postcode/rainfall (13%), nitrate-nitrogen (13%), phosphorus (8%), cation exchange capacity (6%)
- in combination: pH, nitrate-nitrogen and phosphorus with either soil texture, land use or postcode/rainfall explain nearly 60% of the variance in OC results.
- time had minor influence on explaining the variation in OC results

#### 4.3.2 Summarised responses from Department for Environment and Water Landholder Survey

The Department for Environment and Water (DEW) have commissioned telephone surveys of agricultural land managers in South Australia from 1999 to 2017 to collect data on soil and land management practices. The responses relevant for OC in the SAMDB are summarised from Forward, 2018.

Decreasing proportion of respondents concerned about

- soil structure decline from 33% in 2000 to 15% in 2014
- wind erosion from 48% in 2000 to 40% in 2014
- acidity from 26% in 2000 to 17% in 2014
- soil fertility from 64% in 2000 to 50% in 2014

Consistent concern about compaction ~ 25% of respondents.

<sup>&</sup>lt;sup>8</sup> Soil texture and land use could not be included in the individual regression as they are 'groups' rather than a continuum of data. They were able to be included as a grouping factor in combination with individual parameters. <sup>9</sup> water and CaCl<sub>2</sub> method

In 2008, cropping represented 19% of the region (SAMDB NRM 2015). However in the telephone surveys, 80-83% of respondents had cropped the prior season<sup>10</sup>. This may influence the perception of land management issues for the SAMDB NRM region as grazing of modified pastures or native vegetation makes up the majority land use of 46%. Nevertheless, the decrease in respondents perception of soil structural issues are likely due to adoption of practices that protect the soil from erosion including tillage and stubble retention practices and a greater understanding of soil fertility.

# **5 Climate Impacts**

The DEW telephone surveys identified measures that respondents have or will put in place to lessen the risk of impacts of climate change. There has been a shift in measures that respondents will use.

In 2014 measures included

- from altering crop varieties
- decreasing livestock
- change to cropping

- In 2017 measures included
- maintaining soil cover and reducing disturbance
- adapting to more suitable or resilient land use for the system, increase/protect native vegetation
- increasing/modifying irrigation



**Figure 17.** Measures telephone survey respondents have or will put in place to lessen the risk of impacts of climate change.

<sup>&</sup>lt;sup>10</sup> average area of 680 hectares from 1999 to 2016 per respondent

# 6 Key Issues and Opportunities for future projects and programs

A number of knowledge and data gaps have been identified. Future ideas and projects include:

#### To improve the current baseline OC data

- Collation of data from trials or other sources pre 1989 to establish a baseline prior to application of improved soil management techniques (no-till, stubble retention etc.)
- Collation of soil analysis results post 2008 to increase confidence that OC levels over time are representative of the whole region
- Link median annual climatic factors such as combined annual or growing season rainfall to soil sample periods and corresponding to determine level of influence on OC levels
- Continued collation of data to provide a database for future baseline values
- Develop a proxy value for bulk density to enable calculation of OC stock for the combined laboratory dataset

#### For future baseline OC projects

• Establishment of long term monitoring sites that enable repeated monitoring over time for multiple parameters. Consideration to number of sites for rainfall zones x soil type x land use (and what potential rainfall land use may be in the future)

#### To improve understanding of OC storage capacity of soils

• Evaluating carbon fractions and the composition of particulate, humus and resistant by rainfall x soil type x land use. Understanding the distribution in the soil profile and generating the ability to predict soils that are stable, can change quickly with a change in management practice, are at OC equilibrium and those with the opportunity to increase OC.

# 7 Conclusion

Overall, 49% of topsoil samples are in the high, 35% in the moderate and 16% in low OC range. The average OC values for each soil texture fall within the high range for the standards in Table 1. There is an increasing trend for OC values equivalent to 0.07% p.a. from 1989-2007. There is a shift in the proportion of samples from the moderate to high OC range over time. Pasture has the highest average OC values with the majority of samples (85%) in the high OC range but may have low opportunity to further increase OC values. If there are no limitations to rainfall and land use there is the opportunity to increase OC values through shifting the number of samples:

- in sands from the moderate to high range
- in clay loam to clays from the low to moderate and moderate to high range
- in cropping and vegetable from the moderate to high range
- in orchards and vineyards from the low to moderate range and moderate to high range

There is the opportunity to increase OC in subsoil although it can be difficult to influence organic matter inputs at this depth.

# 8 References

FAO and ITPS, 2015. Status of the World's Soil Resources Main Report.

Forward G, 2018. Progress report on soil erosion protection in the South Australian Murray-Darling Basin Region. Department for Environment and Water, Adelaide.

SAMDB NRMB, 2015. SA Murray Darling Basin Natural Resources Management Plan – Volume A Strategic Plan

Sanderman J, Farquharson R and Baldock J, 2010. Soil Carbon Sequestration Potential: A review for Australian agriculture. A report prepared for Department of Climate Change and Energy Efficiency CSIRO, Australia.

Trivedi P, Singh BP, Singh BK, 2018. Chapter 1 Soil Carbon: Introduction, importance, status, threat and mitigation. Editor(s): Brajesh K. Singh, Soil Carbon Storage, Academic Press, 2018, Pages 1-28.

Young M, Davenport D, Schapel A, Hughes B. 2017. Soil Organic carbon in South Australia's Agricultural Soils. DEWNR Technical report 2017/XX, Government of South Australia, through Department of Environment, Water and Natural Resources, Adelaide

# **9** Appendices

### **OC** Values

#### AT1: Topsoil OC values grouped by 5 year timeframe

|       | Mean | 25%  | 75%  | SEM  | CV  | Number |
|-------|------|------|------|------|-----|--------|
| 89-90 | 1.56 | 0.85 | 1.75 | 0.16 | 77  | 56     |
| 92-97 | 1.69 | 0.98 | 2.13 | 0.02 | 61  | 2544   |
| 98-02 | 1.75 | 0.69 | 2.43 | 0.03 | 79  | 2773   |
| 03-07 | 2.10 | 0.83 | 3.06 | 0.04 | 74  | 1781   |
| 08-12 | 0.65 | 0.26 | 0.74 | 0.06 | 109 | 133    |
| 13-17 | 1.09 | 0.29 | 1.20 | 0.14 | 129 | 108    |

#### AT2: Topsoil OC values grouped by texture

| - <u>-</u> - | Mean | 25%  | 75%  | SEM  | CV | Number |
|--------------|------|------|------|------|----|--------|
| All          |      |      |      |      |    |        |
| Sand         | 0.77 | 0.41 | 0.88 | 0.08 | 93 | 79     |
| Loamy sand   | 1.22 | 0.55 | 1.52 | 0.02 | 82 | 2001   |
| Sandy loam   | 1.80 | 0.82 | 2.44 | 0.03 | 72 | 1714   |
| Loamy sand   | 2.21 | 1.07 | 3.17 | 0.04 | 65 | 1273   |
| Clay loam    | 2.12 | 1.17 | 2.87 | 0.03 | 63 | 1507   |
| Clay         | 2.03 | 1.08 | 2.53 | 0.05 | 69 | 728    |
| Topsoil      |      |      |      |      |    |        |
| Sand         | 0.87 | 0.47 | 0.98 | 0.10 | 90 | 61     |
| Loamy sand   | 1.26 | 0.57 | 1.58 | 0.02 | 81 | 1845   |
| Sandy loam   | 1.86 | 0.89 | 2.50 | 0.03 | 70 | 1597   |
| Loam         | 2.25 | 1.13 | 3.19 | 0.04 | 63 | 1184   |
| Clay loam    | 2.15 | 1.21 | 2.90 | 0.03 | 61 | 1417   |
| Clay         | 2.14 | 1.20 | 2.66 | 0.06 | 66 | 650    |
| Subsurface   |      |      |      |      |    |        |
| Sand         | 0.59 | 0.27 | 0.92 | 0.23 | 76 | 4      |
| Loamy sand   | 0.98 | 0.58 | 1.21 | 0.07 | 64 | 74     |
| Sandy loam   | 1.60 | 0.79 | 2.29 | 0.15 | 61 | 40     |
| Loam         | 2.38 | 1.23 | 3.31 | 0.23 | 58 | 36     |
| Clay loam    | 2.84 | 1.78 | 3.73 | 0.25 | 52 | 35     |
| Clay         | 1.97 | 1.20 | 2.67 | 0.24 | 58 | 22     |
| Subsoil      |      |      |      |      |    |        |
| Sand         | 0.42 | 0.29 | 0.53 | 0.07 | 42 | 7      |
| Loamy sand   | 0.29 | 0.20 | 0.34 | 0.02 | 62 | 60     |
| Sandy loam   | 0.29 | 0.16 | 0.34 | 0.03 | 76 | 51     |
| Loam         | 0.37 | 0.24 | 0.47 | 0.04 | 61 | 33     |
| Clay loam    | 0.45 | 0.26 | 0.54 | 0.05 | 64 | 36     |
| Clay         | 0.43 | 0.24 | 0.61 | 0.05 | 64 | 37     |

### AT3: Topsoil OC values grouped by land use

| · · ·      | Mean | 25%  | 75%  | SEM  | CV  | Number |
|------------|------|------|------|------|-----|--------|
| Pasture    | 2.79 | 1.76 | 3.68 | 0.03 | 49  | 2334   |
| Cropping   | 1.21 | 0.77 | 1.52 | 0.01 | 51  | 2206   |
| Hort Vines | 1.07 | 0.50 | 1.43 | 0.03 | 74  | 748    |
| Hort Tree  | 0.84 | 0.34 | 1.10 | 0.04 | 93  | 358    |
| Hort Veg   | 1.22 | 0.50 | 1.76 | 0.09 | 97  | 166    |
| Hort Ann   | 3.03 | 1.64 | 3.76 | 0.36 | 60  | 26     |
| Forestry   | 1.84 | 0.23 | 3.54 | 0.35 | 106 | 32     |

AT4: Topsoil OC values grouped by postcode for topsoil (0-10 or 0-15 cm)

|      | 5 YR  | Mean | 25%  | 75%  | Min  | Max  | Number | SD   | SEM  | CV |
|------|-------|------|------|------|------|------|--------|------|------|----|
| 5153 | 89-90 | 2.63 | 2.15 | 3.15 | 1.60 | 3.60 | 3      | 1.00 | 0.58 | 38 |
|      | 92-97 | 3.11 | 2.44 | 4.38 | 0.79 | 5.20 | 103    | 0.90 | 0.09 | 29 |
|      | 98-02 | 3.70 | 3.05 | 4.38 | 0.71 | 6.42 | 103    | 0.91 | 0.09 | 25 |
|      | 03-07 | 3.63 | 2.84 | 4.27 | 0.71 | 6.29 | 64     | 1.15 | 0.14 | 32 |
|      | 08-12 | 2.91 | 2.55 | 3.19 | 2.37 | 3.64 | 3      | 0.65 | 0.38 | 22 |
| 5157 | 92-97 | 2.57 | 1.20 | 3.51 | 0.01 | 5.90 | 31     | 1.51 | 0.27 | 59 |
|      | 98-02 | 3.52 | 2.80 | 4.36 | 0.71 | 6.43 | 31     | 1.34 | 0.24 | 38 |
|      | 03-07 | 2.72 | 1.82 | 3.50 | 1.13 | 4.78 | 18     | 1.13 | 0.27 | 41 |
| 5171 | 89-90 | 6.20 | 6.20 | 6.20 | 6.20 | 6.20 | 1      |      |      |    |
|      | 92-97 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 1      |      |      |    |
|      | 98-02 | 2.28 | 0.92 | 3.47 | 0.72 | 4.39 | 10     | 1.37 | 0.43 | 60 |
|      | 03-07 | 3.42 | 3.42 | 3.42 | 3.42 | 3.42 | 1      |      |      |    |
| 5172 | 89-90 | 2.90 | 2.90 | 2.90 | 2.90 | 2.90 | 1      |      |      |    |
|      | 92-97 | 2.70 | 1.99 | 3.57 | 0.71 | 3.82 | 27     | 0.97 | 0.19 | 36 |
|      | 98-02 | 3.12 | 2.25 | 3.61 | 1.38 | 5.02 | 17     | 1.14 | 0.28 | 37 |
|      | 03-07 | 4.66 | 3.66 | 5.39 | 2.78 | 7.51 | 23     | 1.29 | 0.27 | 28 |
| 5201 | 89-90 | 5.55 | 5.50 | 5.60 | 5.50 | 5.60 | 2      | 0.07 | 0.05 | 1  |
|      | 92-97 | 3.19 | 2.88 | 3.86 | 0.73 | 4.96 | 53     | 1.07 | 0.15 | 34 |
|      | 98-02 | 4.10 | 3.18 | 5.06 | 0.72 | 6.41 | 51     | 1.36 | 0.19 | 33 |
|      | 03-07 | 4.85 | 4.00 | 5.68 | 0.99 | 8.51 | 65     | 1.35 | 0.17 | 28 |
| 5210 | 89-90 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1      |      |      |    |
|      | 92-97 | 2.79 | 2.13 | 3.32 | 0.77 | 5.39 | 91     | 0.93 | 0.10 | 33 |
|      | 98-02 | 2.88 | 1.79 | 3.87 | 0.72 | 9.35 | 122    | 1.61 | 0.15 | 56 |
|      | 03-07 | 3.10 | 0.25 | 0.41 | 1.18 | 7.18 | 140    | 1.08 | 0.09 | 35 |
|      | 13-17 | 3.30 | 2.29 | 3.85 | 1.30 | 5.95 | 6      | 2.01 | 0.82 | 61 |
| 5211 | 92-97 | 3.71 | 2.98 | 4.59 | 1.62 | 4.85 | 13     | 0.94 | 0.26 | 25 |
|      | 98-02 | 3.37 | 2.45 | 4.46 | 2.04 | 4.80 | 7      | 1.10 | 0.41 | 33 |
|      | 03-07 | 2.53 | 1.57 | 3.30 | 1.26 | 4.86 | 13     | 1.05 | 0.29 | 42 |
| 5213 | 92-97 | 2.70 | 2.44 | 3.01 | 1.98 | 3.18 | 9      | 0.44 | 0.15 | 16 |
|      | 98-02 | 3.38 | 2.73 | 3.87 | 2.66 | 4.47 | 6      | 0.69 | 0.28 | 21 |
|      | 03-07 | 3.57 | 2.46 | 4.68 | 2.46 | 4.68 | 2      | 1.57 | 1.11 | 44 |
| 5214 | 89-90 | 1.45 | 1.10 | 1.80 | 1.10 | 1.80 | 2      | 0.49 | 0.35 | 34 |
|      | 92-97 | 2.50 | 1.30 | 3.74 | 0.16 | 4.93 | 44     | 1.35 | 0.20 | 54 |
|      | 98-02 | 2.01 | 1.34 | 2.34 | 0.91 | 4.47 | 52     | 0.91 | 0.13 | 46 |
|      | 03-07 | 1.38 | 0.77 | 1.21 | 0.38 | 5.34 | 23     | 1.25 | 0.26 | 91 |
| 5235 | 92-97 | 1.52 | 1.06 | 2.00 | 0.49 | 2.41 | 36     | 0.56 | 0.09 | 37 |
|      | 98-02 | 2.04 | 1.46 | 2.55 | 0.65 | 4.00 | 15     | 0.87 | 0.23 | 43 |
|      | 03-07 | 2.31 | 2.14 | 2.47 | 1.41 | 3.31 | 12     | 0.44 | 0.13 | 19 |

|         | 5 <u>YR</u>    | Mean | 25 <u>%</u>    | 75 <u>%</u> | Min  | Max           | Number  | SD    | SEM  | CV         |
|---------|----------------|------|----------------|-------------|------|---------------|---------|-------|------|------------|
| 5236    | 92-97          | 2.98 | 2.51           | 3.53        | 2.41 | 3.83          | 5       | 0.62  | 0.28 | 21         |
|         | 98-02          | 2.32 | 1.95           | 2.68        | 1.87 | 2.98          | 4       | 0.49  | 0.25 | 21         |
|         | 03-07          | 1 71 | 1 14           | 2 3 3       | 0.83 | 2 60          | 6       | 0 70  | 0.28 | 41         |
|         | 08-12          | 3.28 | 3.28           | 3.28        | 3 28 | 3.28          | 1       | 0.1.0 | 0.20 |            |
|         | 13-17          | 2 30 | 2 30           | 2 30        | 2 30 | 2 30          | 1       |       |      |            |
| 5237    | 92_97          | 0.71 | 0.55           | 0.75        | 0.47 | 1.28          | 9       | 0.26  | 0.09 | 37         |
| 5257    | 92-97          | 1.26 | 0.55           | 155         | 0.47 | 1.20          | 3       | 0.20  | 0.03 | 36         |
|         | 02 07          | 1.20 | 1.20           | 1.55        | 0.05 | 2.02          | 4       | 0.45  | 0.25 | 20         |
| 5000    | 03-07          | 0.69 | 0.40           | 0.90        | 0.00 | 1.02          | 5       | 0.45  | 0.20 | 20         |
| 5250    | 92-97          | 1.09 | 0.49           | 1.09        | 0.20 | 1.05          | 17      | 0.20  | 0.09 | 57         |
|         | 90-02          | 1.00 | 0.57           | 2.40        | 0.40 | 4.00<br>5.05  | 17      | 0.90  | 0.22 | 69<br>69   |
| E 2 4 4 | 03-07<br>00.00 | 2.59 | 2.21           | 2.40        | 1.40 | 2.05          | ں<br>د  | 0.07  | 0.50 | 41         |
| 5244    | 03-90          | 2.13 | 3.2 I<br>1 E 2 | 2.00        | 0.47 | 5.10<br>4 0 1 | د<br>۸۵ | 0.07  | 0.50 | 4 I<br>2 2 |
|         | 92-97          | 2.41 | 1.55           | 2.04        | 0.47 | 4.01          | 04      | 0.78  | 0.08 | 32         |
|         | 98-02          | 2.24 | 1.93           | 2.78        | 0.26 | 5.23          | 141     | 0.93  | 0.08 | 42         |
|         | 12 17          | 3.05 | 1.01           | 3.62        | 0.53 | 6.91          | 66      | 1.06  | 0.13 | 35         |
| 5250    | 13-17          | 3.82 | 2.25           | 4.43        | 2.98 | 4.86          | 4       | 0.81  | 0.40 | 21         |
| 5250    | 92-97          | 2.06 | 1.77           | 2.38        | 1.73 | 2.54          | 3       | 0.43  | 0.25 | 21         |
|         | 98-02          | 3.26 | 2.76           | 3.81        | 1.88 | 4.67          | 11      | 0.87  | 0.26 | 27         |
| 5254    | 03-07          | 2.77 | 1.78           | 3.61        | 1.67 | 3.76          | 9       | 0.88  | 0.29 | 32         |
| 5251    | 92-97          | 2.23 | 1.33           | 3.10        | 0.09 | 5.15          | 153     | 1.28  | 0.10 | 57         |
|         | 98-02          | 3.10 | 2.13           | 4.11        | 0.92 | 6.60<br>F 1 C | 124     | 1.29  | 0.12 | 42         |
| 5252    | 03-07          | 2.84 | 2.15           | 3.71        | 0.53 | 5.16          | 45      | 0.99  | 0.15 | 35         |
| 5252    | 92-97          | 2.21 | 1.01           | 2.72        | 1.02 | 3.99          | 50      | 0.74  | 0.10 | 33         |
|         | 98-02          | 2.62 | 2.31           | 2.96        | 0.86 | 4.55          | 36      | 0.70  | 0.12 | 27         |
|         | 03-07          | 3.13 | 2.42           | 3.81        | 1.72 | 4.49          | 34      | 0.81  | 0.14 | 26         |
| 5253    | 92-97          | 1.31 | 0.68           | 1.56        | 0.09 | 6.05          | 118     | 1.02  | 0.09 | /8         |
|         | 98-02          | 1.49 | 0.87           | 1.71        | 0.20 | 6.31          | 116     | 1.04  | 0.10 | 70         |
|         | 03-07          | 2.81 | 1.03           | 5.02        | 0.59 | 6.58          | 36      | 2.11  | 0.35 | 75         |
| 5254    | 92-97          | 1.37 | 1.18           | 1.58        | 0.90 | 1.98          | 20      | 0.30  | 0.07 | 22         |
|         | 98-02          | 1.79 | 1.23           | 1.74        | 0.86 | 4.22          | 6       | 1.22  | 0.50 | 68         |
|         | 03-07          | 0.58 | 0.36           | 0.54        | 0.29 | 1.62          | 16      | 0.43  | 0.11 | 74         |
| 5255    | 89-90          | 1.03 | 0.80           | 1.20        | 0.70 | 1.40          | 8       | 0.25  | 0.09 | 24         |
|         | 92-97          | 1.58 | 0.89           | 2.00        | 0.16 | 8.68          | 298     | 1.06  | 0.06 | 67         |
|         | 98-02          | 1.81 | 0.73           | 2.49        | 0.08 | 7.06          | 810     | 1.41  | 0.05 | 78         |
|         | 03-07          | 1.98 | 0.93           | 2.78        | 0.14 | 8.47          | 519     | 1.42  | 0.06 | 72         |
|         | 08-12          | 0.80 | 0.29           | 0.87        | 0.08 | 3.87          | 52      | 0.78  | 0.11 | 97         |
|         | 13-17          | 1.53 | 1.20           | 1.94        | 0.59 | 2.14          | 8       | 0.51  | 0.18 | 34         |
| 5256    | 89-90          | 1.50 | 1.50           | 1.50        | 1.50 | 1.50          | 1       |       |      |            |
|         | 92-97          | 1.33 | 1.03           | 1.37        | 0.65 | 3.78          | 31      | 0.59  | 0.11 | 45         |
|         | 98-02          | 1.44 | 1.11           | 1.53        | 0.66 | 4.17          | 20      | 0.71  | 0.16 | 49         |
| 5259    | 92-97          | 2.42 | 1.34           | 3.60        | 0.52 | 5.26          | 26      | 1.51  | 0.30 | 62         |
|         | 98-02          | 1.97 | 1.11           | 2.82        | 0.78 | 3.53          | 4       | 1.18  | 0.59 | 60         |
| 5260    | 92-97          | 0.99 | 0.77           | 1.24        | 0.54 | 1.61          | 7       | 0.36  | 0.14 | 36         |
|         | 98-02          | 1.16 | 0.72           | 1.54        | 0.61 | 2.43          | 10      | 0.58  | 0.18 | 50         |
|         | 03-07          | 1.10 | 0.85           | 1.25        | 0.63 | 1.79          | 9       | 0.34  | 0.11 | 31         |
| 5261    | 89-90          | 0.65 | 0.60           | 0.70        | 0.60 | 0.70          | 2       | 0.07  | 0.05 | 11         |
|         | 92-97          | 1.20 | 0.85           | 1.49        | 0.40 | 2.39          | 119     | 0.44  | 0.04 | 36         |
|         | 98-02          | 1.23 | 0.94           | 1.50        | 0.27 | 2.38          | 63      | 0.39  | 0.05 | 32         |
|         | 03-07          | 1.07 | 0.84           | 1.23        | 0.62 | 1.63          | 22      | 0.28  | 0.06 | 26         |
| 5264    | 89-90          | 0.90 | 0.70           | 1.10        | 0.70 | 1.10          | 2       | 0.28  | 0.20 | 31         |
|         | 92-97          | 1.21 | 0.84           | 1.50        | 0.44 | 3.00          | 72      | 0.58  | 0.07 | 48         |
|         | 98-02          | 1.39 | 1.10           | 1.65        | 0.42 | 2.48          | 19      | 0.51  | 0.12 | 37         |

|      | 5 YR           | Mean | 25%  | 75%          | Min  | Max          | Number |          | SD   | SEM  | CV       |
|------|----------------|------|------|--------------|------|--------------|--------|----------|------|------|----------|
|      | 03-07          | 1.47 | 1.06 | 1.76         | 0.60 | 2.65         |        | 14       | 0.60 | 0.16 | 41       |
| 5265 | 92-97          | 1 18 | 0.88 | 141          | 0.45 | 1 97         | é      | 63       | 0.35 | 0.04 | 30       |
| 0200 | 98-02          | 1 14 | 0.86 | 1 5 3        | 0.72 | 1 64         | ·      | 6        | 0.37 | 0.15 | 33       |
|      | 03-07          | 1 31 | 1.08 | 1.55         | 0.49 | 1.01         |        | 18       | 0.39 | 0.09 | 30       |
| 5266 | 92-97          | 1.31 | 0.86 | 1.60         | 0.66 | 4 60         |        | 27       | 0.55 | 0.05 | 56       |
| 5200 | 98-02          | 1.30 | 1.04 | 1.00         | 0.00 | 4.00<br>2.10 |        | 22       | 0.55 | 0.13 | JU<br>11 |
|      | 02 07          | 1.57 | 0.97 | 1.54         | 0.70 | 2.13         | -      | 2J<br>12 | 0.33 | 0.12 | 20       |
| 5201 | 80 00          | 0.70 | 0.67 | 0.79         | 0.00 | 0.90         |        | 2        | 0.42 | 0.12 | 14       |
| 3301 | 03-30          | 0.70 | 0.05 | 0.70         | 0.00 | 1.40         |        | 5<br>74  | 0.10 | 0.00 | 22       |
|      | 92-97          | 0.77 | 0.01 | 0.95         | 0.55 | 1.40         | -      | 24<br>22 | 0.25 | 0.05 | 22       |
| E202 | 90-02<br>90-00 | 0.95 | 0.71 | 0.70         | 0.55 | 0.70         |        | ວວ<br>າ  | 0.50 | 0.05 | 52<br>11 |
| 3302 | 03-30          | 1.75 | 0.00 | 0.70         | 0.00 | 0.70         |        | ے<br>14  | 1 56 | 0.05 | 00       |
|      | 92-91          | 1.75 | 0.54 | 5.74<br>1.16 | 0.17 | 4.50         | ,      | 14<br>FF | 0.21 | 0.42 | 24       |
|      | 90-02          | 0.91 | 0.00 | 1.10         | 0.30 | 1.00         | :      | 1        | 0.31 | 0.04 | 54       |
|      | 03-07          | 0.56 | 0.56 | 0.56         | 0.56 | 0.56         |        | 1        | 0.22 | 0.05 | 25       |
| 5202 | 13-17          | 0.63 | 0.48 | 0.76         | 0.30 | 1.06         | 4      | 20       | 0.22 | 0.05 | 35       |
| 5303 | 92-97          | 0.91 | 0.77 | 1.07         | 0.69 | 1.13         |        | 8        | 0.17 | 0.06 | 19       |
| 5004 | 98-02          | 0.70 | 0.45 | 0.86         | 0.26 | 1.73         | :      | 38       | 0.31 | 0.05 | 45       |
| 5304 | 89-90          | 1.03 | 0.75 | 1.30         | 0.70 | 1.70         |        | 4        | 0.46 | 0.23 | 45       |
|      | 92-97          | 1.00 | 0.79 | 1.20         | 0.50 | 1.45         | 4      | 25       | 0.26 | 0.05 | 26       |
|      | 98-02          | 0.76 | 0.49 | 1.05         | 0.31 | 1.38         | 4      | 25       | 0.30 | 0.06 | 40       |
|      | 03-07          | 0.84 | 0.41 | 1.26         | 0.41 | 1.26         |        | 2        | 0.60 | 0.43 | /2       |
|      | 08-12          | 0.60 | 0.45 | 0.75         | 0.45 | 0.75         |        | 2        | 0.21 | 0.15 | 35       |
|      | 13-17          | 1.11 | 0.97 | 1.25         | 0.87 | 1.45         |        | 9        | 0.20 | 0.07 | 18       |
| 5306 | 92-97          | 0.78 | 0.65 | 0.92         | 0.39 | 0.98         |        | 8        | 0.22 | 0.08 | 28       |
|      | 98-02          | 0.88 | 0.71 | 1.05         | 0.53 | 1.36         |        | 10       | 0.25 | 0.08 | 28       |
| 5307 | 92-97          | 0.66 | 0.55 | 0.76         | 0.30 | 1.30         | 2      | 43       | 0.21 | 0.03 | 32       |
|      | 98-02          | 0.68 | 0.50 | 0.87         | 0.22 | 1.54         |        | 54       | 0.25 | 0.03 | 37       |
|      | 03-07          | 0.90 | 0.64 | 0.88         | 0.39 | 2.34         | ć      | 24       | 0.50 | 0.10 | 56       |
| 5308 | 92-97          | 0.68 | 0.44 | 0.63         | 0.36 | 2.58         |        | 16       | 0.55 | 0.14 | 82       |
|      | 98-02          | 0.60 | 0.51 | 0.63         | 0.35 | 1.19         |        | 16       | 0.19 | 0.05 | 32       |
| 5309 | 92-97          | 0.68 | 0.46 | 0.90         | 0.38 | 1.17         |        | 4        | 0.34 | 0.17 | 51       |
|      | 98-02          | 0.68 | 0.47 | 0.79         | 0.43 | 2.15         |        | 16       | 0.42 | 0.10 | 61       |
|      | 08-12          |      |      |              |      |              |        |          |      |      |          |
| 5310 | 92-97          | 0.71 | 0.61 | 0.81         | 0.58 | 0.85         |        | 3        | 0.14 | 0.08 | 19       |
|      | 98-02          | 0.86 | 0.73 | 0.94         | 0.63 | 1.28         |        | 8        | 0.20 | 0.07 | 24       |
|      | 08-12          |      |      |              |      |              |        |          |      |      |          |
| 5311 | 98-02          | 0.50 | 0.47 | 0.52         | 0.41 | 0.63         |        | 9        | 0.06 | 0.02 | 13       |
|      | 13-17          | 1.27 | 0.93 | 1.61         | 0.93 | 1.61         |        | 2        | 0.48 | 0.34 | 38       |
| 5320 | 92-97          | 0.88 | 0.67 | 1.09         | 0.49 | 1.21         |        | 4        | 0.30 | 0.15 | 34       |
|      | 98-02          | 0.57 | 0.34 | 0.71         | 0.30 | 1.01         |        | 6        | 0.26 | 0.11 | 46       |
|      | 03-07          | 0.88 | 0.61 | 1.08         | 0.50 | 1.34         |        | 8        | 0.30 | 0.10 | 34       |
|      | 08-12          | 0.81 | 0.66 | 0.96         | 0.66 | 0.96         |        | 2        | 0.21 | 0.15 | 26       |
| 5322 | 92-97          | 0.43 | 0.35 | 0.47         | 0.32 | 0.56         |        | 6        | 0.09 | 0.04 | 20       |
|      | 98-02          | 0.45 | 0.35 | 0.48         | 0.29 | 0.91         |        | 18       | 0.16 | 0.04 | 35       |
|      | 03-07          | 0.79 | 0.70 | 0.87         | 0.69 | 0.97         |        | 4        | 0.13 | 0.06 | 16       |
|      | 08-12          |      |      |              |      |              |        |          |      |      |          |
| 5330 | 89-90          | 0.30 | 0.30 | 0.30         | 0.30 | 0.30         |        | 1        |      |      |          |
|      | 92-97          | 0.70 | 0.41 | 1.04         | 0.20 | 1.59         | ź      | 23       | 0.40 | 0.08 | 57       |
|      | 98-02          | 0.58 | 0.42 | 0.63         | 0.24 | 1.80         | 2      | 41       | 0.28 | 0.04 | 48       |
|      | 03-07          | 0.39 | 0.20 | 0.45         | 0.09 | 4.28         | 9      | 90       | 0.45 | 0.05 | 117      |
|      | 08-12          | 0.33 | 0.23 | 0.37         | 0.09 | 1.00         | 3      | 38       | 0.19 | 0.03 | 56       |
|      | 13-17          | 0.51 | 0.43 | 0.59         | 0.41 | 0.63         |        | 3        | 0.11 | 0.06 | 22       |

|       | 5 YR           | Mean  | 25%  | 75%   | Min  | Max          | Number  | SD   | SEM  | CV     |
|-------|----------------|-------|------|-------|------|--------------|---------|------|------|--------|
| 5332  | 92-97          | 0 54  | 0.41 | 0.64  | 0.13 | 1.08         | 8       | 0.27 | 0 10 | 50     |
| 555E  | 98-02          | 0.84  | 0.58 | 1 02  | 0.15 | 1.00         | 6       | 0.27 | 0.10 | 30     |
|       | 03-07          | 0.67  | 0.50 | 0.81  | 0.57 | 0.81         | 2       | 0.20 | 0.10 | 30     |
| 5222  | 89-90          | 0.07  | 0.55 | 0.01  | 0.55 | 0.01         | 1       | 0.20 | 0.14 | 50     |
| 3333  | 03-30          | 0.40  | 0.40 | 0.40  | 0.40 | 2.02         | י<br>סב | 0.45 | 0.00 | 70     |
|       | 92-97          | 0.62  | 0.57 | 0.05  | 0.20 | 2.02         | 55      | 0.45 | 0.08 | 72     |
|       | 98-02          | 0.49  | 0.28 | 0.64  | 0.05 | 2.59         | 144     | 0.36 | 0.03 | 12     |
|       | 03-07          | 0.79  | 0.49 | 1.12  | 0.34 | 1.76         | 12      | 0.47 | 0.14 | 60     |
|       | 08-12          | 0.89  | 0.77 | 0.99  | 0.67 | 1.18         | 5       | 0.19 | 0.08 | 21     |
| 5340  | 92-97          | 0.44  | 0.39 | 0.49  | 0.38 | 0.57         | 4       | 0.09 | 0.04 | 20     |
|       | 98-02          | 0.65  | 0.46 | 0.77  | 0.36 | 1.05         | 8       | 0.23 | 0.08 | 35     |
|       | 03-07          | 1.12  | 0.26 | 1.98  | 0.24 | 2.11         | 4       | 1.00 | 0.50 | 90     |
| 5341  | 98-02          | 0.73  | 0.45 | 0.92  | 0.20 | 2.17         | 30      | 0.40 | 0.07 | 54     |
|       | 03-07          | 0.60  | 0.47 | 0.66  | 0.26 | 2.10         | 32      | 0.31 | 0.05 | 51     |
| 5343  | 98-02          | 0.54  | 0.47 | 0.62  | 0.44 | 0.63         | 7       | 0.08 | 0.03 | 14     |
|       | 03-07          | 0.61  | 0.32 | 0.82  | 0.13 | 1.44         | 8       | 0.42 | 0.15 | 69     |
| 5345  | 98-02          | 1.18  | 0.55 | 1.70  | 0.46 | 2.93         | 9       | 0.82 | 0.27 | 70     |
|       | 03-07          | 0.49  | 0.47 | 0.54  | 0.26 | 0.65         | 7       | 0.12 | 0.04 | 24     |
| 5351  | 92-97          | 1.94  | 1.94 | 1.94  | 1.94 | 1.94         | 1       |      |      |        |
|       | 03-07          | 2.10  | 2.01 | 2.30  | 1.49 | 2.45         | 7       | 0.31 | 0.12 | 15     |
| 5353  | 92-97          | 1.48  | 0.95 | 1.67  | 0.31 | 4.48         | 97      | 0.81 | 0.08 | 54     |
|       | 98-02          | 1.39  | 0.78 | 1.88  | 0.38 | 3.20         | 54      | 0.73 | 0.10 | 52     |
|       | 03-07          | 1.95  | 1.26 | 2.61  | 0.64 | 3.42         | 33      | 0.78 | 0.14 | 40     |
|       | 13-17          | 1.05  | 0.90 | 1.19  | 0.90 | 1.19         | 2       | 0.21 | 0.15 | 20     |
| 5354  | 98-02          | 0.52  | 0.23 | 0.86  | 0.13 | 0.90         | 6       | 0.32 | 0.13 | 62     |
|       | 03-07          | 0.40  | 0.31 | 0.49  | 0.31 | 0.49         | 2       | 0.13 | 0.09 | 32     |
| 5356  | 92-97          | 1.39  | 1.09 | 1.69  | 0.53 | 2.43         | 53      | 0.40 | 0.06 | 29     |
|       | 98-02          | 1.30  | 1.06 | 1.53  | 1.06 | 1.53         | 2       | 0.33 | 0.24 | 26     |
|       | 03-07          | 1.64  | 1.25 | 1.92  | 0.80 | 3.60         | 34      | 0.61 | 0.11 | 37     |
| 5357  | 92-97          | 0.93  | 0.41 | 1.69  | 0.27 | 1.73         | 5       | 0.72 | 0.32 | 77     |
|       | 98-02          | 0.30  | 0.29 | 0.31  | 0.29 | 0.31         | 2       | 0.01 | 0.01 | 5      |
| 5374  | 89-90          | 1 5 5 | 120  | 1 80  | 1 10 | 2 00         | 6       | 0.34 | 0 14 | 22     |
| 0011  | 92-97          | 1.61  | 1 24 | 1 92  | 0.09 | 4 4 3        | 179     | 0.54 | 0.04 | 33     |
|       | 98-02          | 2 00  | 1.81 | 225   | 1 44 | 2 48         | 17      | 0.28 | 0.07 | 14     |
|       | 03-07          | 1 5 5 | 1.01 | 1.87  | 1.22 | 1 96         | 8       | 0.20 | 0.07 | 20     |
| 5381  | 92_97          | 1.55  | 1.25 | 1.07  | 0.87 | 3.69         | 20      | 0.51 | 0.16 | 17     |
| 5501  | 98-02          | 1.51  | 0.84 | 2.14  | 0.07 | 2 20         | 20      | 0.71 | 0.10 |        |
|       | 02 07          | 1.49  | 1.00 | 1 0 1 | 1.04 | 2.20         | 4       | 0.70 | 0.50 | 11     |
| 5/12  | 80 00          | 1.50  | 1.05 | 1.51  | 0.00 | 1.90         | 4       | 0.00 | 0.55 | <br>21 |
| 5415  | 02 07          | 2.01  | 1.50 | 1.00  | 0.90 | 1.00         | 5<br>5  | 0.51 | 0.15 | 21     |
|       | 92-97<br>00 02 | 2.01  | 1.55 | 2.52  | 1.20 | 4.09<br>2.50 | 22      | 0.09 | 0.10 | 17     |
|       | 90-02          | 1.02  | 1.05 | 1.97  | 1.50 | 2.50         | 20      | 0.52 | 0.00 | 17     |
| E 41C | 03-07          | 2.21  | 2.08 | 2.40  | 0.64 | 3.32         | 34      | 0.49 | 0.08 | 22     |
| 5416  | 89-90          | 0.90  | 0.90 | 0.90  | 0.90 | 0.90         | 1       | 0.67 | 0.17 | 12     |
|       | 92-97          | 1.59  | 1.07 | 1.99  | 0.88 | 2.98         | 16      | 0.67 | 0.17 | 42     |
|       | 98-02          | 1.52  | 1.23 | 1.80  | 1.01 | 1.91         | 4       | 0.39 | 0.19 | 25     |
|       | 03-07          | 2.28  | 2.28 | 2.28  | 2.28 | 2.28         | 1       | 0.01 | 0.45 | 40     |
| 5417  | 89-90          | 1.65  | 1.50 | 1.80  | 1.50 | 1.80         | 2       | 0.21 | 0.15 | 13     |
|       | 92-97          | 1.48  | 1.07 | 1.48  | 0.90 | 4.97         | 47      | 0.84 | 0.12 | 57     |
|       | 98-02          | 1.41  | 1.24 | 1.56  | 0.57 | 2.22         | 16      | 0.39 | 0.10 | 27     |
|       | 03-07          | 1.87  | 1.65 | 2.12  | 1.62 | 2.25         | 3       | 0.33 | 0.19 | 18     |
| 5418  | 92-97          | 2.15  | 1.41 | 2.11  | 1.01 | 4.71         | 14      | 1.15 | 0.31 | 54     |
|       | 03-07          | 1.66  | 1.66 | 1.66  | 1.66 | 1.66         | 1       |      |      |        |
| 5419  | 89-90          | 1.10  | 1.10 | 1.10  | 1.10 | 1.10         | 1       |      |      |        |

|      | 5 YR  | Mean | 25%  | 75%  | Min  | Max  | Number | SD   | SEM  | CV |
|------|-------|------|------|------|------|------|--------|------|------|----|
|      | 98-02 | 1.23 | 1.23 | 1.23 | 1.23 | 1.23 | 1      |      |      |    |
|      | 03-07 | 1.55 | 1.11 | 1.99 | 0.76 | 2.13 | 4      | 0.59 | 0.30 | 38 |
| 5420 | 92-97 | 1.09 | 0.92 | 1.27 | 0.54 | 2.05 | 47     | 0.27 | 0.04 | 25 |
|      | 98-02 | 0.85 | 0.70 | 1.01 | 0.46 | 1.06 | 4      | 0.27 | 0.13 | 31 |
|      | 03-07 | 3.11 | 1.84 | 4.21 | 0.48 | 6.19 | 8      | 1.85 | 0.66 | 60 |
| 5422 | 92-97 | 1.06 | 0.85 | 1.16 | 0.54 | 2.07 | 34     | 0.32 | 0.05 | 30 |
|      | 03-07 | 2.38 | 2.27 | 2.50 | 2.18 | 2.53 | 4      | 0.15 | 0.08 | 6  |
| 5454 | 89-90 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | 1      |      |      |    |
|      | 92-97 | 1.42 | 1.18 | 1.68 | 0.83 | 2.20 | 82     | 0.31 | 0.03 | 22 |
|      | 98-02 | 1.94 | 1.61 | 2.27 | 1.61 | 2.27 | 2      | 0.47 | 0.33 | 24 |
|      | 03-07 | 1.47 | 1.47 | 1.47 | 1.47 | 1.47 | 1      |      |      |    |
| 5491 | 89-90 | 1.25 | 1.10 | 1.40 | 1.10 | 1.40 | 2      | 0.21 | 0.15 | 17 |
|      | 92-97 | 1.35 | 1.09 | 1.54 | 0.64 | 3.30 | 166    | 0.36 | 0.03 | 26 |
|      | 98-02 | 1.54 | 1.30 | 1.86 | 0.81 | 2.21 | 27     | 0.39 | 0.07 | 25 |
|      | 03-07 | 1.81 | 1.54 | 2.08 | 1.38 | 2.18 | 8      | 0.31 | 0.11 | 17 |

### AT5: OC values grouped by postcode for subsurface (10-30 or 15-30 cm) and subsoil (>30 cm)

|      |       | SUBSL | JRFACE |      |       |      | S    | UBSOIL |      |       |      |
|------|-------|-------|--------|------|-------|------|------|--------|------|-------|------|
|      | 5 YR  | Mean  | Min    | Max  | Count | SD   | Mean | Min    | Max  | Count | SD   |
| 5153 | 98-02 | 0.59  | 0.59   | 0.59 | 1     |      |      |        |      |       |      |
| 5157 | 98-02 | 4.14  | 2.47   | 5.81 | 2     | 2.36 |      |        |      |       |      |
| 5171 | 89-90 |       |        |      |       |      |      |        |      |       |      |
| 5201 | 03-07 | 3.87  | 3.87   | 3.87 | 1     |      |      |        |      |       |      |
| 5210 | 98-02 |       |        |      |       |      | 0.36 | 0.23   | 0.72 | 6     | 0.19 |
| 5210 | 13-17 | 1.35  | 0.40   | 3.01 | 9     | 0.75 |      |        |      |       |      |
| 5211 | 92-97 |       |        |      |       |      |      |        |      |       |      |
| 5213 | 92-97 |       |        |      |       |      |      |        |      |       |      |
| 5214 | 03-07 | 0.71  | 0.71   | 0.71 | 1     |      | 0.51 | 0.45   | 0.57 | 2     | 0.08 |
| 5235 | 98-02 | 1.50  | 1.50   | 1.50 | 1     |      |      |        |      |       |      |
| 5236 | 13-17 | 0.59  | 0.59   | 0.59 | 1     |      |      |        |      |       |      |
| 5244 | 98-02 | 1.27  | 0.69   | 1.72 | 4     | 0.43 |      |        |      |       |      |
| 5251 | 03-07 | 2.62  | 2.45   | 2.79 | 2     | 0.24 |      |        |      |       |      |
| 5252 | 98-02 | 1.97  | 1.97   | 1.97 | 1     |      |      |        |      |       |      |
| 5253 | 03-07 |       |        |      |       |      | 0.57 | 0.51   | 0.63 | 2     | 0.08 |
| 5255 | 92-97 |       |        |      |       |      | 0.36 | 0.20   | 0.46 | 3     | 0.14 |
|      | 98-02 | 1.79  | 0.21   | 4.15 | 60    | 1.00 | 0.38 | 0.08   | 1.60 | 95    | 0.24 |
|      | 03-07 | 2.21  | 0.27   | 5.89 | 93    | 1.36 | 0.52 | 0.15   | 1.19 | 35    | 0.29 |
|      | 13-17 | 0.91  | 0.70   | 1.07 | 3     | 0.19 | 0.37 | 0.19   | 0.55 | 2     | 0.25 |
| 5266 | 03-07 | 1.10  | 0.53   | 1.55 | 6     | 0.40 |      |        |      |       |      |
| 5302 | 98-02 | 1.34  | 1.34   | 1.34 | 1     |      |      |        |      |       |      |
|      | 13-17 | 0.40  | 0.12   | 1.19 | 10    | 0.30 | 0.15 | 0.05   | 0.64 | 25    | 0.13 |
| 5303 | 98-02 | 1.20  | 1.20   | 1.20 | 1     |      |      |        |      |       |      |
| 5304 | 03-07 | 0.20  | 0.20   | 0.20 | 1     |      | 0.16 | 0.15   | 0.17 | 2     | 0.01 |
| 5307 | 03-07 | 0.82  | 0.65   | 0.98 | 3     | 0.17 |      |        |      |       |      |
| 5309 | 08-12 |       |        |      |       |      | 0.29 | 0.15   | 0.43 | 2     | 0.20 |
| 5310 | 08-12 |       |        |      |       |      | 0.13 | 0.13   | 0.13 | 1     |      |
| 5320 | 03-07 | 0.75  | 0.40   | 0.99 | 5     | 0.22 |      |        |      |       |      |

|      |       | SUBSL | JRFACE |      |       |      | S    | UBSOIL |      |       |      |
|------|-------|-------|--------|------|-------|------|------|--------|------|-------|------|
|      | 5 YR  | Mean  | Min    | Max  | Count | SD   | Mean | Min    | Max  | Count | SD   |
|      | 08-12 | 0.79  | 0.28   | 1.38 | 4     | 0.47 |      |        |      |       |      |
| 5322 | 08-12 |       |        |      |       |      | 0.42 | 0.36   | 0.48 | 2     | 0.08 |
| 5330 | 98-02 | 0.22  | 0.22   | 0.22 | 1     |      | 0.10 | 0.10   | 0.10 | 1     |      |
|      | 03-07 | 0.24  | 0.16   | 0.34 | 6     | 0.07 | 0.20 | 0.13   | 0.33 | 6     | 0.08 |
|      | 08-12 |       |        |      |       |      | 0.33 | 0.16   | 0.84 | 10    | 0.21 |
|      | 13-17 | 0.35  | 0.35   | 0.35 | 1     |      |      |        |      |       |      |
| 5333 | 98-02 | 0.37  | 0.24   | 0.52 | 4     | 0.13 |      |        |      |       |      |
|      | 98-02 |       |        |      |       |      | 0.20 | 0.14   | 0.26 | 2     | 0.08 |
| 5341 | 03-07 | 0.37  | 0.28   | 0.44 | 3     | 0.08 | 0.29 | 0.21   | 0.45 | 13    | 0.07 |
| 5343 | 03-07 | 0.71  | 0.43   | 0.98 | 2     | 0.39 | 0.31 | 0.22   | 0.39 | 2     | 0.12 |
| 5353 | 98-02 | 0.65  | 0.65   | 0.65 | 1     |      | 0.55 | 0.34   | 0.83 | 6     | 0.18 |
| 5354 | 98-02 |       |        |      |       |      | 0.41 | 0.25   | 0.52 | 7     | 0.11 |
| 5420 | 03-07 | 0.57  | 0.42   | 0.71 | 2     | 0.21 | 0.13 | 0.01   | 0.25 | 9     | 0.08 |
| 5491 | 98-02 |       |        |      |       |      | 0.41 | 0.28   | 0.58 | 4     | 0.13 |

### PROPORTION OF SAMPLES IN THE LOW, MODERATE AND HIGH OC RANGE

| AT6: Pro | portion | of top | soil OC | ranges | for the | SAMDB | Region |
|----------|---------|--------|---------|--------|---------|-------|--------|
|          |         |        |         |        |         |       |        |

|          | Proportion | Number |
|----------|------------|--------|
| Low      | 16%        | 1112   |
| Moderate | 35%        | 2351   |
| High     | 49%        | 3291   |
| Total    | 100%       | 6754   |

#### AT7: Proportion of topsoil OC ranges by texture

|            | Low | Moderate | High | Number |
|------------|-----|----------|------|--------|
| Sand       | 23% | 51%      | 26%  | 61     |
| Loamy sand | 13% | 39%      | 48%  | 1845   |
| Sandy loam | 14% | 31%      | 55%  | 1597   |
| Loam       | 14% | 33%      | 53%  | 1184   |
| Clay loam  | 22% | 35%      | 43%  | 1417   |
| Clay       | 23% | 35%      | 42%  | 650    |
| All        | 16% | 35%      | 49%  | 6754   |

#### AT8: Proportion of topsoil OC ranges by land use

|            | Low | Moderate | High | Number |
|------------|-----|----------|------|--------|
| Pasture    | 2%  | 12%      | 85%  | 2259   |
| Cropping   | 19% | 59%      | 22%  | 2152   |
| Hort Vines | 31% | 44%      | 25%  | 578    |
| Hort Tree  | 48% | 26%      | 26%  | 262    |
| Hort Veg   | 14% | 55%      | 31%  | 121    |
| Hort Ann   | 0%  | 23%      | 77%  | 26     |
| Forestry   | 29% | 10%      | 62%  | 21     |

#### AT9: Proportion of topsoil OC ranges by land use and texture

| Land use   | Texture    | Low | Moderate | High | Number |
|------------|------------|-----|----------|------|--------|
| PASTURE    | Sand       | 0%  | 42%      | 58%  | 12     |
|            | Loamy sand | 2%  | 13%      | 85%  | 565    |
|            | Sandy loam | 1%  | 9%       | 90%  | 604    |
|            | Loam       | 2%  | 12%      | 87%  | 504    |
|            | Clay loam  | 5%  | 14%      | 81%  | 406    |
|            | Clay       | 5%  | 16%      | 79%  | 168    |
| CROPPING   | Sand       | 17% | 67%      | 17%  | 12     |
|            | Loamy sand | 14% | 59%      | 27%  | 600    |
|            | Sandy loam | 15% | 54%      | 31%  | 478    |
|            | Loam       | 14% | 68%      | 18%  | 317    |
|            | Clay loam  | 28% | 57%      | 15%  | 515    |
|            | Clay       | 26% | 60%      | 14%  | 230    |
| HORT VINES | Sand       | 20% | 80%      | 0%   | 5      |
|            | Loamy sand | 20% | 54%      | 27%  | 157    |
|            | Sandy loam | 31% | 49%      | 20%  | 120    |
|            | Loam       | 41% | 33%      | 26%  | 82     |
|            | Clay loam  | 37% | 37%      | 26%  | 150    |

|             | Clay       | 31% | 36%  | 33%  | 64  |
|-------------|------------|-----|------|------|-----|
| HORT TREE   | Sand       | 0%  | 43%  | 57%  | 7   |
|             | Loamy sand | 45% | 31%  | 25%  | 130 |
|             | Sandy loam | 67% | 21%  | 12%  | 57  |
|             | Loam       | 46% | 23%  | 31%  | 26  |
|             | Clay loam  | 32% | 14%  | 54%  | 28  |
|             | Clay       | 57% | 29%  | 14%  | 14  |
| VEGETABLE   | Sand       | 0%  | 71%  | 29%  | 7   |
|             | Loamy sand | 16% | 65%  | 19%  | 31  |
|             | Sandy loam | 17% | 63%  | 20%  | 30  |
|             | Loam       | 8%  | 54%  | 38%  | 13  |
|             | Clay loam  | 13% | 39%  | 48%  | 31  |
|             | Clay       | 22% | 33%  | 44%  | 9   |
| HORT ANNUAL | Loamy sand | 0%  | 100% | 0%   | 1   |
|             | Sandy loam | 0%  | 29%  | 71%  | 7   |
|             | Loam       | 0%  | 29%  | 71%  | 7   |
|             | Clay loam  | 0%  | 14%  | 86%  | 7   |
|             | Clay       | 0%  | 0%   | 100% | 4   |
| FORESTRY    | Loamy sand | 67% | 33%  | 0%   | 3   |
|             | Sandy loam | 40% | 0%   | 60%  | 5   |
|             | Loam       | 25% | 0%   | 75%  | 4   |
|             | Clay loam  | 25% | 0%   | 75%  | 4   |
|             | Clay       | 0%  | 20%  | 80%  | 5   |

### AT10: Proportion of topsoil OC ranges by postcode for all years

| Postcode |     | Moderate | High | Number |
|----------|-----|----------|------|--------|
|          |     |          |      |        |
| 5153     | 0%  | 4%       | 96%  | 276    |
| 5157     | 5%  | 5%       | 90%  | 80     |
| 5171     | 0%  | 31%      | 69%  | 13     |
| 5172     | 0%  | 4%       | 96%  | 68     |
| 5201     | 3%  | 2%       | 95%  | 170    |
| 5210     | 0%  | 4%       | 96%  | 354    |
| 5211     | 0%  | 0%       | 100% | 33     |
| 5213     | 0%  | 0%       | 100% | 17     |
| 5214     | 7%  | 26%      | 68%  | 121    |
| 5235     | 2%  | 21%      | 78%  | 63     |
| 5236     | 0%  | 9%       | 91%  | 11     |
| 5237     | 28% | 39%      | 33%  | 18     |
| 5238     | 15% | 65%      | 21%  | 34     |
| 5244     | 5%  | 17%      | 77%  | 294    |
| 5250     | 0%  | 17%      | 83%  | 23     |
| 5251     | 9%  | 9%       | 82%  | 322    |
| 5252     | 0%  | 21%      | 79%  | 120    |
| 5253     | 16% | 50%      | 33%  | 270    |
| 5254     | 31% | 52%      | 17%  | 42     |
| 5255     | 15% | 38%      | 47%  | 1683   |
| 5256     | 0%  | 37%      | 63%  | 52     |
| 5259     | 0%  | 20%      | 80%  | 30     |

| Postcode | Low | Moderate | High | Number |
|----------|-----|----------|------|--------|
| 5260     | 0%  | 58%      | 42%  | 26     |
| 5261     | 7%  | 43%      | 50%  | 206    |
| 5264     | 2%  | 36%      | 62%  | 107    |
| 5265     | 2%  | 66%      | 32%  | 87     |
| 5266     | 2%  | 34%      | 65%  | 62     |
| 5301     | 8%  | 85%      | 7%   | 60     |
| 5302     | 17% | 67%      | 16%  | 89     |
| 5303     | 33% | 63%      | 4%   | 46     |
| 5304     | 34% | 57%      | 9%   | 58     |
| 5306     | 6%  | 78%      | 17%  | 18     |
| 5307     | 23% | 65%      | 12%  | 121    |
| 5308     | 31% | 63%      | 6%   | 32     |
| 5309     | 30% | 65%      | 5%   | 20     |
| 5310     | 27% | 64%      | 9%   | 11     |
| 5311     | 33% | 67%      | 0%   | 9      |
| 5320     | 22% | 67%      | 11%  | 18     |
| 5322     | 61% | 36%      | 4%   | 28     |
| 5330     | 70% | 28%      | 2%   | 188    |
| 5332     | 69% | 31%      | 0%   | 16     |
| 5333     | 67% | 28%      | 5%   | 197    |
| 5340     | 81% | 13%      | 6%   | 16     |
| 5341     | 73% | 24%      | 3%   | 62     |
| 5343     | 73% | 27%      | 0%   | 15     |
| 5345     | 63% | 31%      | 6%   | 16     |
| 5351     | 0%  | 0%       | 100% | 8      |
| 5353     | 18% | 42%      | 40%  | 184    |
| 5354     | 50% | 50%      | 0%   | 8      |
| 5356     | 21% | 65%      | 13%  | 89     |
| 5357     | 43% | 57%      | 0%   | 7      |
| 5374     | 13% | 56%      | 30%  | 210    |
| 5381     | 36% | 39%      | 25%  | 28     |
| 5413     | 2%  | 46%      | 52%  | 121    |
| 5416     | 18% | 55%      | 27%  | 22     |
| 5417     | 19% | 60%      | 21%  | 68     |
| 5418     | 7%  | 53%      | 40%  | 15     |
| 5419     | 33% | 50%      | 17%  | 6      |
| 5420     | 53% | 36%      | 12%  | 59     |
| 5422     | 61% | 26%      | 13%  | 38     |
| 5454     | 9%  | 76%      | 15%  | 86     |
| 5491     | 24% | 64%      | 13%  | 203    |

|      | High Range |       |       |       |
|------|------------|-------|-------|-------|
|      | 89-90      | 92-97 | 98-02 | 03-07 |
| 5153 | 67%        | 95%   | 98%   | 94%   |
| 5157 |            | 84%   | 90%   | 100%  |
| 5171 | 100%       |       | 70%   | 100%  |
| 5172 | 100%       | 93%   | 94%   | 100%  |
| 5201 | 100%       | 92%   | 94%   | 98%   |
| 5210 | 100%       | 96%   | 93%   | 99%   |
| 5211 |            | 100%  | 100%  | 100%  |
| 5213 |            | 100%  | 100%  | 100%  |
| 5214 | 50%        | 77%   | 75%   | 35%   |
| 5235 |            | 72%   | 73%   | 100%  |
| 5236 |            | 100%  | 100%  | 75%   |
| 5237 |            | 0%    | 50%   | 80%   |
| 5238 |            | 0%    | 12%   | 63%   |
| 5244 | 67%        | 88%   | 65%   | 89%   |
| 5250 |            | 33%   | 100%  | 78%   |
| 5251 |            | 74%   | 89%   | 93%   |
| 5252 |            | 66%   | 89%   | 88%   |
| 5253 |            | 29%   | 25%   | 75%   |
| 5254 |            | 25%   | 33%   | 0%    |
| 5255 | 0%         | 44%   | 48%   | 52%   |
| 5256 | 100%       | 65%   | 60%   |       |
| 5259 |            | 81%   | 75%   |       |
| 5260 |            | 43%   | 20%   | 67%   |
| 5261 | 0%         | 55%   | 51%   | 27%   |
| 5264 | 0%         | 58%   | 63%   | 86%   |
| 5265 |            | 35%   | 50%   | 17%   |
| 5266 |            | 52%   | 78%   | 67%   |
| 5301 | 0%         | 4%    | 9%    |       |
| 5302 | 0%         | 43%   | 11%   | 0%    |
| 5303 |            | 0%    | 5%    |       |
| 5304 | 0%         | 8%    | 12%   | 0%    |
| 5306 |            | 25%   | 10%   |       |
| 5307 |            | 7%    | 11%   | 21%   |
| 5308 |            | 13%   | 0%    |       |
| 5309 |            | 0%    | 6%    |       |
| 5310 |            | 0%    | 13%   |       |
| 5311 |            |       |       | 0%    |
| 5320 |            | 0%    | 0%    | 25%   |
| 5322 |            | 0%    | 0%    | 25%   |
| 5330 | 0%         | 0%    | 3%    | 1%    |

### AT11: Proportion of topsoil OC ranges by postcode by 5 year time frame

|      | High Range | ·     |       |       |
|------|------------|-------|-------|-------|
|      | 89-90      | 92-97 | 98-02 | 03-07 |
| 5332 |            | 0%    | 0%    | 0%    |
| 5333 | 0%         | 6%    | 3%    | 17%   |
| 5340 |            | 0%    | 0%    | 25%   |
| 5341 |            |       | 3%    | 3%    |
| 5343 |            |       | 0%    | 0%    |
| 5345 |            |       | 11%   | 0%    |
| 5351 |            | 100%  |       | 100%  |
| 5353 |            | 31%   | 39%   | 67%   |
| 5354 |            |       | 0%    | 0%    |
| 5356 |            | 8%    | 0%    | 24%   |
| 5357 |            | 0%    | 0%    |       |
| 5374 | 33%        | 29%   | 53%   | 13%   |
| 5381 |            | 20%   | 50%   | 25%   |
| 5413 | 0%         | 43%   | 43%   | 82%   |
| 5416 | 0%         | 31%   | 0%    | 100%  |
| 5417 | 0%         | 21%   | 19%   | 33%   |
| 5418 |            | 43%   |       | 0%    |
| 5419 | 0%         |       | 0%    | 25%   |
| 5420 |            | 2%    | 0%    | 75%   |
| 5422 |            | 3%    |       | 100%  |
| 5454 | 0%         | 15%   | 50%   | 0%    |
| 5491 | 0%         | 8%    | 33%   | 50%   |



AF1: Box and Whisker plot displaying the OC distribution by soil layer (top (TS), subsurface (MS) and subsoil (SS)) and 5-year time frame.



AF2: Box and Whisker plot displaying the OC distribution by soil texture and 5-year time frame.