Soil Carbon in SA Soils

Bowhill, 17 February 2022

Carbon and Agriculture Is it possible to make your farm carbon neutral?

Amanda Schapel PIRSA Amanda.Schapel@sa.gov.au

Government of South Australia

Department of Primary Industries and Regions

Department for Environment and Water

Carbon in your farm business

GHG emissions

Government of South Australia

Department of Primary Industries and Regions

Carbon Neutral

- businesses and organisations are choosing to reduce their climate impact to zero by becoming carbon neutral
- gain certification (e.g. Climate Active, Industry targets)

To do this:

- 1. calculate the greenhouse gas emissions C Footprint
- 2. reduce emissions as much as possible by investing in new technology or changing the way you operate
- 3. offset any remaining emissions by sequestration or purchasing carbon offset units

Carbon Footprint – Turretfield Research Centre

Gross Emissions		(t CO ₂ -e)	% of emissions			
Scope 1		885	94%			
Scope 2		6	0.5%			
Scope 3		53	5.5%			
Total Emissi	ions	944	100%			
Methane – C	H ₄	799	84%			
Nitrous oxide	$-N_2O$	54	6%			
Carbon dioxide – CO_2		91	10%			
SCOPE 1	Direct GHG emissions from sources owned or controlled by the company (e.g. diesel use in tractors, livestock emissions)					
SCOPE 2	GHG emissions from generation of electricity consumed on the location by the company					
SCOPE 3		ons from sources not o y (eg extraction and pro				

Carbon Projects – Emission Reduction Fund

- Earn Australian Carbon Credit Units (ACCUs) by participating in specific activities under emission reduction or sequestration projects
- ACCUs can be sold to generate income either to the government or in a secondary market
- You can not sell ACCUs and use to become C Neutral
- Contracts with Clean Energy Regulator (CER)
 - Fixed obligates seller to deliver an agreed quantity of ACCUs
 - Optional offers seller the right but not the obligation to sell ACCUs
 - No contract still provide offset and audit reports and ACCUs issued
 - CER will not purchase without a contract
 - can sell on secondary market or directly to other parties

http://www.cleanenergyregulator.gov.au/ERF/Forms-and-resources/auctions-and-contracts/contracts-frequently-asked-questions#5

METHOD	PROJECTS	ACCUS ISSUED 🧿
Vegetation	15	219,072
Landfill and Waste	9	1,364,496
Agriculture	29	6,168
Savanna Burning	0	0
Energy Efficiency	3	29,632
Transport	1	0
Industrial Fugitives	0	0
Facilities	0	0
Total	57	1,619,368

All Methods

SOUTH AUSTRALIA CONTRACTED	HIDE
Projects	15
ACCUs Issued 🧿	1,308,209
SOUTH AUSTRALIA NON-CONTRACTED	HIDE
Projects	42
ACCUs Issued 🧿	311,159

Agriculture methods – 3 out of 29 projects are contracted

ACCUs for Brinkley Biogas Flaring Project ACCUs for Brinkley Biogas Flaring Project

Department of Primary Industries and Regions

http://www.cleanenergyregulator.gov.au/maps/Pages/erf-projects/index.html

ERF Auction Results – Auction 13 October 2021

http://www.cleanenergyregulator.gov.au/ERF/auctions-results/october-2021

15/02/22

14/09/21

Source: Jarden Australia as of 16/02/22

https://accus.com.au/

For further details or access to ACCU pricing, please contact Jarden Australia on +61 (2) 8310 7918 or commodities@jardengroup.com.au

06/04/21

6.75

19/02/20

\$30.75 \$28.75 \$26.75 \$24.75

\$22.75

\$18.75 \$14.75

ERF – to think about

- There are many C methods that include emission reduction and sequestration
- At this stage, you can't have a vegetation AND a soil C project on the same piece of land
- Stacked C methods will reduce admin costs and efficiency of data that needs to be entered

Soil C projects

- Project needs to be registered before baselining or activity is applied
- Crediting period 25 or 100 years
- Permanence obligation period 100 years
- Baseline period 5 years prior to project start

Soil Carbon Projects - ERF

How much is change worth?

If soil OC ↑ over 5 year	s by 0.5% = 7	7.70 tCO₂e/ha
--------------------------	----------------------	---------------

Discounts (minus from original value)	tCO ₂ e/ha
5% for uncertainty	7.32
25% for 25 year contract	5.49
GHG emissions for 5 year sampling period	
not calculated	?
20% C broker fee	4.39

\$/tCO2e/ha	Before discounts	After discounts
\$16.94	\$130	\$74
\$50.00	\$385	\$220

Assumptions OC = 0.5 %Bulk density = 1.4g/cm³ Soil depth = 30 cm = 2.1 tC/ha = 7.7 tCO₂e/ha

Bulk density and gravel remains the same 5 yrs

C broker fee between 15-25%

Still need to pay for soil sampling and independent land management report

Carbon Units

C Concentration (%) is the unit used for soil analysis results

C Stock is the unit used in carbon accounting and reported as

- t C / ha or CO₂ equivalents
- 1 t C / ha = 3.67 t CO₂e / ha
- Is measured in the top 30 cm of soil

To calculate stock need the soil bulk density (mass of soil / volume of soil) and the gravel content of the soil

Soil C tests

OC (Walkley Black method) most often used

• OC_{wb} represents 75-90% of the Total OC result

If C accounting - Total OC needs to be measured

- where soil pH_{water} is < 7.5 with no fizz: Total C = Total OC
- where soil pH_{water} is >7.5 with low to medium fizz: Total OC by acid pre-treatment
 - where soil has high to very high fizz: carbonate needs to be fully removed by acid pre-treatment. OC_{wb} test can provide a guide.

Question Time

How to accumulate OC in your soils

Department of Primary Industries and Regions

What is soil C?

Inorganic (IC) and organic (OC) forms

- IC (carbonate) is mineral based and not influenced by land management practices (except liming)
- OC is living or decomposing organic compounds of plants, animal and microbial origin
 - influenced by land management practices
 - makes up ~ 58% of the mass of soil OM
 - SOM = Total SOC x 1.72

Can we increase soil function and increase OC or is it a balance?

Resilience

What factors influence soil OC?

How does OC get into the soil?

- Plant residue (above and below ground)
- Root exudates plants convert CO₂ via photosynthesis into sugars that are exuded through the roots to support biology (liquid carbon pathway)

- Living soil biology can make up to 1-5% and dead as much as 30-50% of OC
- Manure and urine from livestock
- Fire pyrogenic carbon

Department of Primary Industries and Regions

Decomposition losses are between 70-90% of C inputs

Soils capacity to stabilise OC

Soil has a finite capacity to protect OC from mineralisation = capacity to bond OC

Industries and Regions

STABILISED with clay minerals, Fe, AI, Ca and aggregates (MOAM)

What we know about soil C South Australian agricultural soils

Department of Primary Industries and Regions

Soil Carbon Benchmarks for the agricultural zone 1990-2007

Soil and Land Hub – Collaboration between Sustainable Soils groups in DEW and PIRSA

Land Resources Home (environment.sa.gov.au) under All Reports for Soil C in SA Volume 4 **Soil Carbon in South Australia** Volume 4: Benchmarks and Data Analysis for the Agricultural Zone 1990 - 2007

Amanda Schapel (PIRSA), Tim Herrmann, Susan Sweeney and Craig Liddicoat Department for Environment and Water May, 2021

DEW Technical report 2021/03

Soil and Land Hub

A collaboration between the Sustainable Soils Groups in DEW and PIRSA

Department for Environment and Water Soil and Land Hub – Collaboration between Sustainable Soils groups in DEW and PIRSA

Industries and Regions

Lower Murray OCwb 1990-2007

0.07% / yr

Ag Zone								
Texture	Mean	Count	Mean	25%	40%	50%	60%	75%
Sand	1.12							
Loamy sand	1.42	152	0.94	0.50	0.60	0.71	0.87	1.13
Sandy loam	1.79	172	1.40	0.79	1.03	1.18	1.32	1.80
Loam	1.96	159	1.47	0.89	1.10	1.21	1.40	1.73
Clay loam	1.93	145	1.66	1.10	1.29	1.40	1.56	1.86
Clay	1.66	81	2.10	1.10	1.33	1.51	1.77	2.34
Weighted Mean (all texture)	1.77	709	1.45	0.85	1.04	1.17	1.34	1.71

• No decrease in SOC for clay loam and clay as seen in other agricultural districts - possibly due to irrigation.

	Pro					
Land use	Count	Mean	25%	50%	75%	District Prop (%)
Orchard / Vineyard	48	1.02	0.44	0.88	1.36	9
Cropping	288	1.19	0.80	1.18	1.46	56
Vegetable	26	1.42	0.86	1.52	1.87	5
Pasture	145	2.27	1.34	1.95	2.76	28

Northern Murray OCwb 1990-2007

0.01% / yr

Ag Zone								
Texture	Mean	Count	Mean	25%	40%	50%	60%	75%
Sand	1.12	13	0.26	0.07	0.12	0.13	0.23	0.47
Loamy sand	1.42	236	0.48	0.34	0.40	0.45	0.48	0.55
Sandy loam	1.79	190	0.52	0.35	0.41	0.46	0.52	0.63
Loam	1.96	100	0.74	0.37	0.54	0.63	0.71	1.00
Clay loam	1.93	82	1.00	0.46	0.65	0.81	1.01	1.33
Clay	1.66	44	0.77	0.18	0.34	0.42	0.66	1.34
Weighted Mean (all texture)	1.77	665	0.60	0.35	0.44	0.51	0.60	0.79

Benchmark SOC Concentration									
Land use	Count	Mean	25%	50%	75%	District Prop (%)			
Cropping	191	0.58	0.40	0.50	0.65	45			
Orchard / Vineyard	199	0.56	0.33	0.46	0.67	46			
Pasture	34	0.58	0.40	0.50	0.70	8			

Department of Primary Industries and Regions

Government of South Australia

Department for Environment and Water

Opportunity to store soil OC

Higher potential for OC storage at lower OC concentration

Rainfall has a huge influence on C storage sharp increase between 500-550 mm

annual rainfall

Rainfall (mm) and clay concentration (%)

Department of Primary Industries and Regions

Opportunity to store soil OC

Sufficient OC inputs

To maintain SOC at 1% need to yield 1.5 t/ha

Source: Tim Herrmann from DEW Sustainable Soils

Sufficient nutrients POC to HOC or Active to Stable

Nutrients required to create 1t humus

- 80 kg N
- 20 kg P

Clive Kirkby ratio

14 kg S

Estimated cost using synthetic nutrients \$300

In cereal-based farming systems extra nutrients

- with low (4t/ha) or normal stubble quantities X build stable soil C stocks
- where large amounts of stubble (12 t/ha) ٠ ✓ for enhancing soil carbon

Soil texture

Soil depth

Soil texture in the same paddock strongly affects OC stock

Management practice can change OC stock at depth

Adverse soil conditions can increase OC

But = a non-functioning soil by affecting biological activity

Saline black clay over calcrete

Depth (cm)	PH H₂O	pH CaCl2	NO3 mg/kg	EC 1:5 dS/m	ECe	0C %
0-10	9.2	8.5	5.4	0.82	7	3.99
10-20	9.6	8.7	1.5	0.84	7	1.05
20-28	9.6	8.7	1.3	0.85	13	0.52
28-55	9.7	9.0	<1	0.78	12	0.06

Sand over clay with increasing lime

Depth (cm)	D2H Hq	pH CaCl ₂	NO3 mg/kg	EC 1:5 dS/m	ECe	0C %
0-10	8.1	7.5	12	0.14	2	1.02
10-19	9.0	8.3	1.4	0.094	1	0.16
19-32	9.6	9.0	1.8	0.83	7	0.35
32-48	9.4	8.9	3	2.1	32	0.37

Department of Primary Industries and Regions

C stock by management practice

Management practices had variable effect on soil C

Abbreviations: P = Pasture, A = Annual, K = Kikuyu, C = Crop (no till, stubble retention).

Variability OC concentration – time and depth

Making sense of annual changes in OC can be tricky

Change can take 5-10 years to be able to say if change is occurring

OC changes over time and with depth - more stable > 10 cm

Accumulating OC

Opportunity to increase soil OC depends on

- Ability of soil to stabilise OC (texture, mineralogy)
- Capacity of the soil to store more OC (check the benchmarks)
- Ability to grow sufficient biomass
- OC inputs are more than the OC outputs (decomposition / erosion) How to make decomposition rates most efficient for what we need
- Possibility to increase and maintain OC inputs
- OC pools in the soil longevity

How to convert OC to more stable forms - consider if sufficient nutrition for transformation

Take Home Thoughts

Determine why you want to change OC

trade-offs for function if focus on GHG

Be realistic about how much you can change OC

• texture, rainfall, inherent limitations, induced limitations, fertility

OC is variable and needs a long time (5-10yrs) to measure change

- at the surface, down the soil profile, over time
- often more stable > 10 cm with less climatic influence
- good depth to think about changing OC with root growth and activity

Amanda Schapel Senior Soil and Land Management Consultant 0411 137 258 amanda.schapel@sa.gov.au

Department of Primary Industries and Regions