

Evidence towards Australia's largest feral cat free island safe haven:
Completion of the Dudley Peninsula feral cat eradication program

Title: Evidence towards Australia's largest feral cat free island safe haven: Completion of the Dudley Peninsula feral cat eradication program.

Year: 2025

Publisher: Kangaroo Island Landscape Board (KILB)

This publication may be cited as:

Mulvaney J, Geissler C, Jennings P. (2025) Evidence towards Australia's largest feral cat free island safe haven: Completion of the Dudley Peninsula feral cat eradication program. Kangaroo Island Landscape Board Feasibility Report

Postal Address: 35 Dauncey Street, Kingscote, SA, 5223.

Front cover image credit: R Hohnen.

Disclaimer: The KILB and the Government of South Australia, their employees and their servants do not warrant or make any representation regarding the use or results of use of the information contained herein as to its correctness, accuracy, or otherwise. The KILB and the Government of South Australia, their employees and their servants expressly disclaim all liability or responsibility to any person using the information or advice herein.

©2025 KILB All the material published in this publication is licenced under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0), except content supplied by third parties, images, and logos. All other rights are reserved.

Primary author contact: Josh Mulvaney (josh.mulvaney@sa.gov.au)

Date: 18 February 2025

Distribution: Public Domain

Contents

List of tables	4
List of figures	4
Acknowledgment of Country and Sea Country	5
Summary	6
Introduction	7
Methods	8
Eradication Feasibility Decision Support Tool	8
Input Data	8
Scenario Descriptions	11
Costings	12
Results	14
Discussion	18
References	22
List of Tables	
Table 1. The pest parameters required as inputs for all simulations.	9
Table 2. The control method parameters.	10
Table 3. Final population reduction estimates for the five scenarios.	14
Table 4. Estimated budget for each scenario based on current program running costs.	16
Table 5. Estimated cost of the mop up stage based on current program running costs.	17
Table 6. Breakdown of funding shortfalls for Scenario 3 in comparison to existing project funding (all costs in AUD\$).	19
List of Figures	
Figure 1. Maps of the masks in which specific control methods were applied.	12
Figure 2. Population size estimates for each of the five scenarios.	15

Acknowledgment of Country and Sea Country

The Ngarrindjeri, Kaurna and Narungga Nations are the traditional owners of Kangaroo Island, connected to its lands and waters via ancient storylines and ancestral occupation. The three Nations acknowledge and respect the interests that each group hold to Kangaroo Island, including their storylines, spiritual and cultural connections, and histories. The three Nations work together to protect and preserve the cultural values of the Island for current and future generations. The three Nations also acknowledge the interests of other Aboriginal groups who have historic connections to the Island.

The Kangaroo Island Landscape Board acknowledges the deep, ongoing spiritual connection that Ngarrindjeri, Kaurna and Narungga Nations hold to Kangaroo Island, and commit to working together to protect and preserve the cultural values of the Island for current and future generations.

Summary

- The Australian Department of Climate Change, Energy, the Environment and Water's (DCCEEW) Threatened Species Action Plan 2022-2032 has identified Kangaroo Island (KI) as a Priority Place and committed to management of feral cats on the Dudley Peninsula, where an eradication program is currently underway.
- Recent changes in legislation have enabled a broader use of soft-jaw leghold traps within the KI Dudley Peninsula Feral Cat Eradication program, prompting a review of the program's tactics and feasibility.
- We used the Eradication Feasibility Decision-Support tool app developed by the Centre for Invasive Species Solutions "Tools for Developing Cost-Effective Decisions for Managing Invasive Pest Eradications Report" (PO1-I-005) to explore what resources are required to achieve an initial knockdown of at least 90% of the feral cat population on the Dudley Peninsula in order to transition to a mop up phase.
- Five management scenarios were tested for the Kangaroo Island Dudley Peninsula Feral Cat Eradication Program which take into account feral cat biology, efficacy of control, legislation and funding.

- We found that the scenario in which a population knockdown of >90% was completed soonest was the cheapest to fund.
- Implementing the current strategy in the next season will result in a 75% knockdown, which would require subsequent treatment (multiple years) before the transition to mop up is feasible.
- The current strategy can be improved where legislative barriers are removed (up to 85% knockdown) and where funding shortfalls are filled (up to 95% knockdown).
- A faster transition to mop up is a cheaper option in the long term but requires an additional AUD\$1,933,570 to implement in the coming year (2025–26).
- The completion of the mop up phase and proof of absence monitoring is estimated to cost AUD\$4,761,074 over two years, with the cheapest total cost to complete the eradication AUD\$7,397,896.

Introduction

Feral cats (*Felis catus*) pose a threat to the unique native fauna of Kangaroo Island and cause financial losses to the island's livestock industry (Hodgens et al. 2022, Taggart et al. 2019). The Australian Government has identified Kangaroo Island as a Priority Place and is one of five islands supported by the Australian Government to achieve eradication of feral cats. The Kangaroo Island Landscape Board is currently undertaking a feral cat eradication program on the Dudley Peninsula – a portion of the island separated by a feral cat exclusion fence.

Recent changes to the *South Australian Animal Welfare Act Regulations* (2012) have prompted a review of strategies, timelines and resources required to complete the program. Specifically, the use of soft-jaw leghold traps is no longer restricted to locations greater than 1km away from dwellings and this enables a much broader use of these traps. In addition to this, a trap alert network that allows remote sensing of trap status (open or closed) has recently been installed across the entire Dudley Peninsula. These two changes represent significant advances that impact the overall strategy of the Dudley Feral Cat Eradication Program.

The Dudley Feral Cat Eradication Program is set to undertake the eradication in two stages: knockdown, in which the population is reduced by >90% using techniques applied across the landscape; and mop up, where remaining individuals are removed with targeted techniques (Landscape South Australia, 2021). While the program is currently in its knockdown phase, changes in the availability of control tools, particularly at landscape scale, offer a chance to review strategies.

A key challenge for the Feral Cat Eradication Program is to design a knockdown program that achieves a >90% reduction in the feral cat population in the most cost-effective way. Computer simulations are an effective method for making comparisons between management scenarios and have already proven useful in assisting with decisions regarding the amount of culling required (Venning et al. 2021) and the spatial arrangement of traps for feral cat control programs (Glen et al. 2016). We simulated a set of scenarios that represent current efforts and alternative models for the program depending on a range of funding and legislative options. The program we used has been designed specifically for this purpose by the Centre for Invasive Species Solutions (Ramsey et al. 2022) and allows for comparison of the relative differences between management options based on input data about the pest itself and the tools used to control it.

Methods

Eradication Feasibility Decision Support Tool

The outcomes of five alternative control programs

on the Dudley Peninsula were simulated using a

decision-support tool specifically designed for this purpose (Ramsey *et al.* 2022). The tool is aimed at land managers and is available online: https://landcare.shinyapps.io/EradSim/. It simulates the level of pest reduction based on input data about the area, pest species and control tools. The tool can simulate the use of up to four control methods simultaneously including trapping, bait-stations, hunting and aerial poison.

The use of the decision-support tool in its online format is subject to several constraints. Primarily, it is restricted to a maximum of four control methods operating at a constant rate for a set period. This does not easily allow for the exploration of alternative scenarios over multiple seasons. The tool has stochastic components so that running the same parameters twice can give slightly different outputs. Running the simulations with more iterations provides more accurate estimates but adds time. This set of scenarios were run with 100 iterations.

Importantly the tool has not been designed to provide accurate predictions of residual population size, but rather to show the relative efficacy of each scenario (Ramsey *et al.* 2022).

Input Data

The data used to run the simulations are shown in Tables 1 and 2. In order of preference, the data were derived from the following sources:

- analysis of existing data collected by the project,
- ii. findings from peer-reviewed publications,
- iii. expert elicitation.

The key areas of uncertainty in the input data are related to initial population size, annual population growth rate, and capture probability (g0).

Given that the scenarios are aimed at forecasting program efficacy starting from the coming winter (May 2025), the number of feral cats remaining was estimated six months in advance. An estimate of 100–200 cats was used, which allows for a small amount of recruitment in the current summer months. The tool accounts for uncertainty in population size by allowing inputs for maximum and minimum number of cats.

Annual population growth rate has not been quantified empirically for the Dudley population, however Venning et al. (2021) simulated the dynamics of an unculled population of feral cats on Kangaroo Island and reported an instantaneous rate of change of 0.222. This agrees with the findings of van Aarde (1984) who found that a population of feral cats on Marion Island increased at a rate of 0.17–0.23 annually. As such, an annual growth rate of 23% was used as an input for these simulations.

The home range (sigma) estimates were informed by a number of camera trapping studies undertaken on the Dudley Peninsula (Hohnen et al., 2020, 2022, 2023). These studies were focused on feral cat density but provide a modelled estimate of sigma and g0. An average of six estimates (excluding two outliers) were used to attain a sigma value of 416.75m (standard deviation 229.87m). Sigma is related to home range size, and the estimate used here is in alignment with radio collar data from Hodgens (2019) which found average home range size of 3.76km² for cats on Kangaroo Island.

The final key parameter, g0, is the probability of capture on a given night when the control device is located at the centre of the animal's home range. It is difficult to attain good estimates for g0 for the two trapping methods used in this program because there are no published data for that combination of control tools and target species.

However, there are modelled g0 estimates for remote cameras based on the work of Hohnen et al (2020, 2022, 2023), and these formed the basis of the estimates for cage traps and soft-jaw leghold traps. Given that g0 describes the efficacy of a device for making detections, it was speculated that it was related to their catch per unit effort (CPUE). Relative differences in CPUE were used to scale g0 against the modelled findings for camera traps.

This method for deriving g0 provided estimates that were low compared to values used elsewhere for feral cats in cage traps (0.01–0.08, Glen *et al* 2016) and possums in cage traps (0.07–0.15, Anderson *et al.* 2022) and legholds (0.03–0.29, Anderson *et al.* 2022). As such, it can be considered a conservative estimate of g0.

It's important to note that the parameters g0, sigma, and population growth rate, as well as the hunting and aerial baiting kill rates are likely to vary with feral cat density. This has been documented for sigma and g0 in studies of other taxa (Anderson *et al.* 2022, Vattiato *et al.* 2023).

Table 1. The pest parameters required as inputs for all simulations.

Parameter	Input	Source
Number (min – max)	100-200	Expert elicitation
Home Range (Sigma)		Average of six estimates from:
Mean	416.75m	Hohnen et al. 2020 Hohnen et al. 2022
StdDev	229.87m	Hohnen <i>et al</i> . 2023
Annual Population Growth	23%	Van Aarde 1984
Start Day	1*	
Length	365 days	

* (i.e. starting from day one of the simulation)

Table 2. The control method parameters.

Parameter	Input				
Summer Cage Trapping					
Daily Bycatch	0.2				
g0 (StdDev)	0.0055 (0.01)				
Proportion untrappable	0.4				
Winter Cage Trapping					
Daily Bycatch	0.16				
g0 (StdDev)	0.0063 (0.01)				
Proportion untrappable	0.4				
Summer Soft-Jaw Leghold Ti	Summer Soft-Jaw Leghold Trapping				
Daily Bycatch	0.16				
g0 (StdDev)	0.0102 (0.01)				
Proportion untrappable	0.05				
Winter Soft-Jaw Leghold Trapping					
Daily Bycatch	0.14				
g0 (StdDev)	0.0181 (0.01)				
Proportion untrappable	0.05				
Hunting					
Distance per Day	20km				
Kill Rate	0.85				
Aerial Baiting					
Operation length (days)	14				
Percent kill	75				

Scenario Descriptions

Five scenarios that represent realistic alternatives for the program dependant on funding and legislative constraints were explored. The timeframe for the onset of these scenarios is from May 2025.

Scenario 1.

Continue with current strategies

In this scenario the program continues in its current form. A large winter trapping program focussed on an array of 650 cage traps positioned within 150m of roads and tracks is implemented. Soft-jaw leghold trapping is then undertaken in summer, with a smaller program of about 120 traps restricted to locations >1km away from genuine dwellings. Summer leghold trapping is supplemented with 30 days of hunting.

Scenario 2.

Legislative changes enable broadscale soft-jaw leghold trapping

This scenario explores the effect of removing the restriction on the placement of traps within 1km of a genuine dwelling. This scenario looks at how expanding the use of legholds alone can impact the program. The array consists of 500 legholds used within 150m of a road or track over the course of a year.

Scenario 3. Fully resourced winter program

Scenario 3 explores the best case in terms of funding and regulations. It contains an array of 500 leghold traps and 650 cage traps installed within 150m of roadsides. These efforts are complimented with a shooting program operating full time and a 14-day baiting program in mid-winter. It only runs for 150 days over winter 2025.

Scenario 4. Restricted trapping program

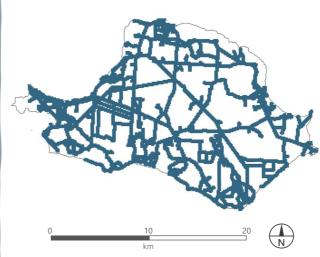
This scenario replicates the early years of the project where Trap Alert Technology was not in place, severely restricting the number of traps that could be managed. This scenario explores a full year of the program in which 200 cage traps are run in winter and 80 legholds are run in summer.

Scenario 5. Seasonal trapping program

Scenario 5 explores a restricted program in which 200 cage traps are run over winter. This could be reflective of a program reliant on efforts from the community, or a small team only working between May and September.

Costings

Costs were estimated for each scenario based on the current costs of the program. The Eradication Feasibility Tool allows estimation of program budget based on a cost per trap or daily rate, however this function was not used. Given the fact that the program is already underway, and there are accurate budget estimates for the current scenario, it was possible to estimate the likely costs of expanding or contracting the program based on these.


The budgets included estimates for staff time and on costs, vehicles, additional infrastructure and hardware beyond what already currently exists within the project, and subscriptions for the trap alert system and 4G cameras. The budget for the baiting program included the cost of bait, staff time and helicopter hire for aerial deployment.

The cost for the mop up stage of the program was also estimated in order to provide an indication of the total cost to complete the program.

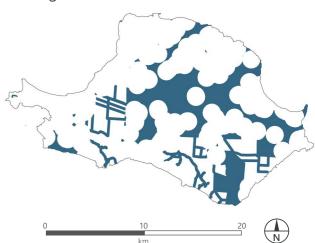
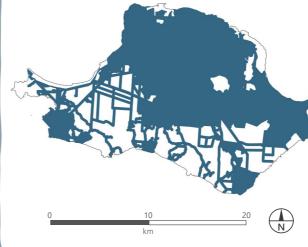
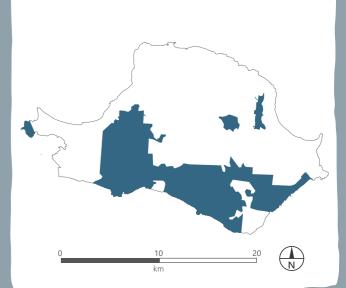


Figure 1. Maps of the masks in which specific control methods were applied. Blue areas indicate locations where the control method was able to be applied.


a) Traps installed in locations within 150m of a road.


b) Leghold traps installed >1km from a place of genuine residence and within 150m of a road in continuous native vegetation.

c) Areas available to hunting. All cleared land is available, but only areas within 150m of a road in continuous native vegetation.

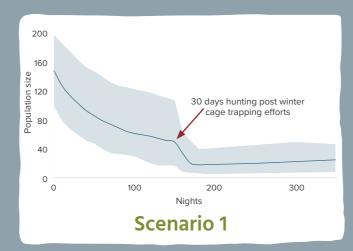
d) Areas available for aerial baiting.

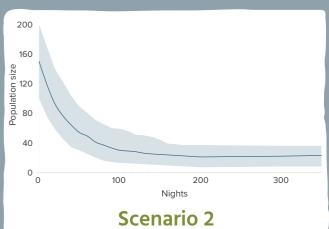
Results

The outputs of the simulations are shown in Table 3, and trends in population size are shown in Figure 2. Table 4 shows the relative costs for each scenario and Table 5 shows the estimated costs required to complete mop up.

The only scenario that resulted in a knockdown of greater than 90% of the starting population was Scenario 3 – the fully resourced winter program.

The broadscale use of soft-jaw leghold traps alone caused a knockdown of 85%, and a continuation of the current strategies resulted in a 75% reduction.


Scenario 4, the restricted program, resulted in a reduction of 24% of the starting population and Scenario 5, the seasonal community trapping program, had a negligible impact on the feral cat population. Given that Venning et al. (2021) found that harvest rates need to be above 35% to achieve eradication within 10 years, Scenarios 4 and 5 are not viable options. Importantly, Scenarios 1 and 2 would require at least one additional trapping season to achieve the goal of >90% population reduction, and this has implications for the budgets required to implement those scenarios.


Table 3. Final population reduction estimates for the five scenarios.

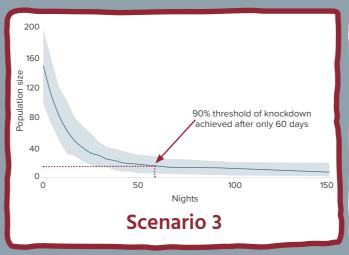

Scenario Description	Population Reduction
Scenario 1. Continue with current strategies	75%
Scenario 2. Legislative change enables broadscale leghold trapping	85%
Scenario 3. Fully resourced winter program	95%
Scenario 4. Restricted trapping program	24%
Scenario 5. Seasonal trapping program	-3% (population increase)

Figure 2. Population size estimates for each of the five scenarios. Note the difference in scale on the x-axis for Scenario 3.

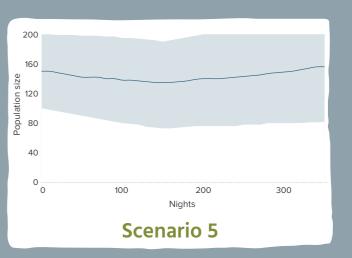


Table 4. Estimated budget for each scenario based on current program running costs.

Technique	Item	Scenario 1 Current Program*	Scenario 2 Leghold Expansion*	Scenario 3 Fully Resourced Program	Scenario 4 Restricted Program*	Scenario 5 Seasonal Program*
Cage Traps	Number of traps	650	0	650	200	200
	Subtotal	1,510,760	0	\$1,510,760	959,991	65,000 (volunteer program)
Leghold Traps	Number of traps	120	500	500	80	0
	Subtotal	340,395	1,781,156	\$947,832	340,396	0
Hunting	Staff Days Allocated	30	0	150	0	0
	Subtotal	12,823	0	\$128,230	0	0
Baiting	Subtotal	0	0	\$50,000	0	0
TOTA	AL (AUD\$)	1,863,978	1,781,156	2,636,822	1,300,387	65,000

^{*} Scenarios requiring additional treatment (multiple years) to achieve >90% knockdown.

All scenarios cost estimates are for a 12-month program.

Cost estimates for cage and leghold traps include staff salary, overheads, vehicle lease and running costs and trapping supplies over 12 months.

Cost estimates for hunting include salary, overheads, vehicle lease and running costs and shooting supplies over 30 and 150 days of operations.

Cost estimate for baiting includes bait purchase and helicopter hire.

The scenarios ranged in cost between AUD\$65,000 and AUD\$2,636,822 for the first year of treatment.

Scenario 3 was the only strategy to achieve the goal of >90% knockdown.

No other scenario produced feasible harvest rates for eradication (i.e. at least >90%). The minimum cost of completing the knockdown stage is at least AUD\$3,727,956 for Scenario 1, and \$AUD3,562,312 for Scenario 2, as they would require an additional trapping season.

The cost of mop up was estimated to be AUD\$4,761,074 spent over the course of two years, regardless of which knockdown scenario was used.

Table 5. Estimated cost of the mop up stage based on current program running costs.

Technique	Item	Mop Up Year 1	Mop Up Year 2	Total
	Number of traps	500	200	
Leghold Traps	Number of staff (FTE)	10	4	
	Subtotal	2,094,874	1,308,742	3,403,616
Hunting	Number of staff	4	4 (use existing staff and vehicles)	
	Subtotal	567,458	0	567,458
Detector Dogs	Subtotal	270,000	270,000	540,000
Planning for whole of island feasibility		250,000		250,000
			TOTAL (AUD\$)	4,7611,074

Discussion

The use of the Eradication Feasibility Decision Support Tool provided modelled estimates of feral cat population reduction based a range of current and predicted management options. These options explored a range of scenarios based on current legislation and funding arrangements. We were able to compare the efficacy of five scenarios based on their simulated level of population reduction. Under the current program, we could expect a 75% knockdown after a full year of trapping. Hunting was shown to be highly effective in this scenario, but effort was limited to only 30 nights at the end of winter. During the summer months the population recovered slightly indicating that the use of only 120 legholds in restricted locations is not sufficient to prevent reproduction within the population. Our estimated budget for this scenario was AUD\$1,863,979 over the course of the first year, but would require at least one additional year of treatment to achieve a 90% knockdown of the population, totalling AUD\$3,727,958 before the program could transition to the mop up stage.

Expanding the use of soft-jaw leghold traps to within 1km of a genuine residence (Scenario 2), resulted in a significant improvement in program efficacy, with the broadscale use of these tools alone resulting in an 85% knockdown of the feral cat population over the course of one year. The implementation of this strategy was cheaper than the current program by about AUD\$231,000, however it would also require an additional year of treatment to achieve a 90% knockdown, totalling AUD\$3,264,790 before the program could transition to the mop up stage. When combined with the use of cage traps, hunting and baiting in the fully resourced winter program (Scenario 3), the expansion of soft-jaw leghold trapping had the most dramatic impact on the feral cat population, causing a reduction of 95% over the course of just six months. This program cost an additional AUD\$772,843 when compared to the first year of the current program, but took half the time to

Likewise, the removal of funding to the program had a significant impact on the feral cat population. Where the program was restricted to 200 winter cage traps and 80 summer legholds (Scenario 4), the feral cat population only fell by 24%. Where the program was restricted further to a seasonal trapping program over winter (Scenario 5), the population effectively recovered over summer, nullifying any impact of trapping on the population.

Importantly, none of the scenarios forced the population to zero (100% population reduction) and this indicates that all the scenarios will require some degree of mop up. Transitioning into the mop up phase is only possible where the remaining population is at a level that will prevent it from recovering while mop up is occurring. Mopping up techniques are typically more labour intense, and frequently require high investments in time and money to remove remaining individuals and this is why high levels of knockdown are required before transitioning to mop up (Algar et al., 2019; Pacific Invasives Initiative 2007)

Scenario 3 is the only scenario where a transition to mop up is viable within one year. This is a critical distinction, because it is the only scenario that will not require a subsequent year of treatment. This means that, while Scenario 3 was the most expensive scenario in the first year, it is the cheapest option in the long-term. The finding that maximising harvest rates and undertaking rapid knockdown is the most cost effective strategy is consistent with the findings of other eradication efforts (Hamnet *et al.* 2024).

Table 6 shows a breakdown of funding required and current shortfalls in each year.

Table 6. Breakdown of funding shortfalls for Scenario 3 in comparison to existing project funding (all costs in AUD\$).

Year	Year 1 Knockdown (including winter blitz)		Year 3 Mop up/ proof of absence
Modelled amount	2,636,822	2,255,537	2,505,537
Funded amount	703,252	303,131	417,925
Shortfall	1,933,570	2,202,406	2,087,612

Scenario 3 cost approximately AUD\$66 ha-1 to complete knockdown (population reduced to 5%). The cost of this scenario compares well with previously modelled estimates, but does not include expenditure to date. Venning *et al.* (2021) estimated costs for a 99% knockdown across the whole island could range from AUD\$55 ha-1 to AUD\$213 ha-1 depending on the combination of tools used.

In order to complete the eradication, additional funding would be required to undertake mop up. We estimated that the cost of mop up would be approximately AUD\$4,761,074 regardless of which scenario was used for knockdown.

Costs for full completion of other eradication programs have ranged between AUD\$6 ha-1 and AUD\$314 ha-1 (Campbell *et al.* 2011, adjusted to 2021 AUD\$ in Venning *et al.* 2021) but there is a large amount of variation in the complexity of these programs.

As discussed, there is some uncertainty regarding the input data for these scenarios, particularly around the population size, growth rate, and probability of capture. Further work could refine our estimates using g0 and growth rates derived from field observations.

Conclusion

Increased expenditure in the short term was found to be the most cost-effective way to achieve a >90% knockdown of the feral cat population on the Dudley Peninsula. Alternative scenarios were cheaper to run for the first year but required additional treatments over subsequent years.

It is now possible for the Kangaroo Island Dudley Feral Cat Eradication Program to undertake soft-jaw leghold trapping at a landscape scale thanks to changes in legislation and the installation of a remote-sensing network. However, there is a funding shortfall of AUD\$1,933,570 to implement this knockdown strategy. Further to this, the mop up phase of the program is estimated to cost AUD\$4,761,074, bringing the total required to complete the program to AUD\$7,397,896.

References

Algar D, Johnston M, Pink C. Big island feral cat eradication campaigns: an overview and status update of two significant examples In: Veitch CR, Clout MN, Martin AR, Russell JC, West CJ (eds.) (2019) Island invasives: scaling up to meet the challenge. Pp 238-243. Occasional Paper SSC no. 62. Gland, Switzerland: IUCN.

Animal Welfare Regulations 2012 (South Australia)

Campbell K, Harper G, Algar D, Hanson C, Keitt B, and Robinson S. (2011) *Review of 428 feral cat eradications on islands*. Island Invasives: Eradication and Management: 37-46

Glen AS, Latham MC, Anderson D, Leckie C, Niemiec R, Pech RP, Byrom AE. (2016) *Landholder* participation in regional-scale control of invasive predators: an adaptable landscape model. Biological Invasions. Vol 9. Pp 329-338.

Hamnet PW, Saltre F, Page B, Tarran M, Korcz M, Fielder K, Andrews L, Bradshaw C. (2024) Stochastic population models to identify optimal and cost-effective strategies for feral pig eradication. Ecosphere. Vol 15. No 12.

Hodgens P, Kinloch M, Dowie D. (2019) *Technical Report on Kangaroo Island Feral Cat Research Studies and Control Trials 2016-2018*. Natural Resources Kangaroo Island Feral Cat Eradication Program.

Hodgens P, Groffen H, O'Handley R, Vyas A, Lignereux L. (2022) *Cat predation of Kangaroo Island dunnarts in aftermath of bushfire*. Scientific Reports Vol 12. Pp 7272.

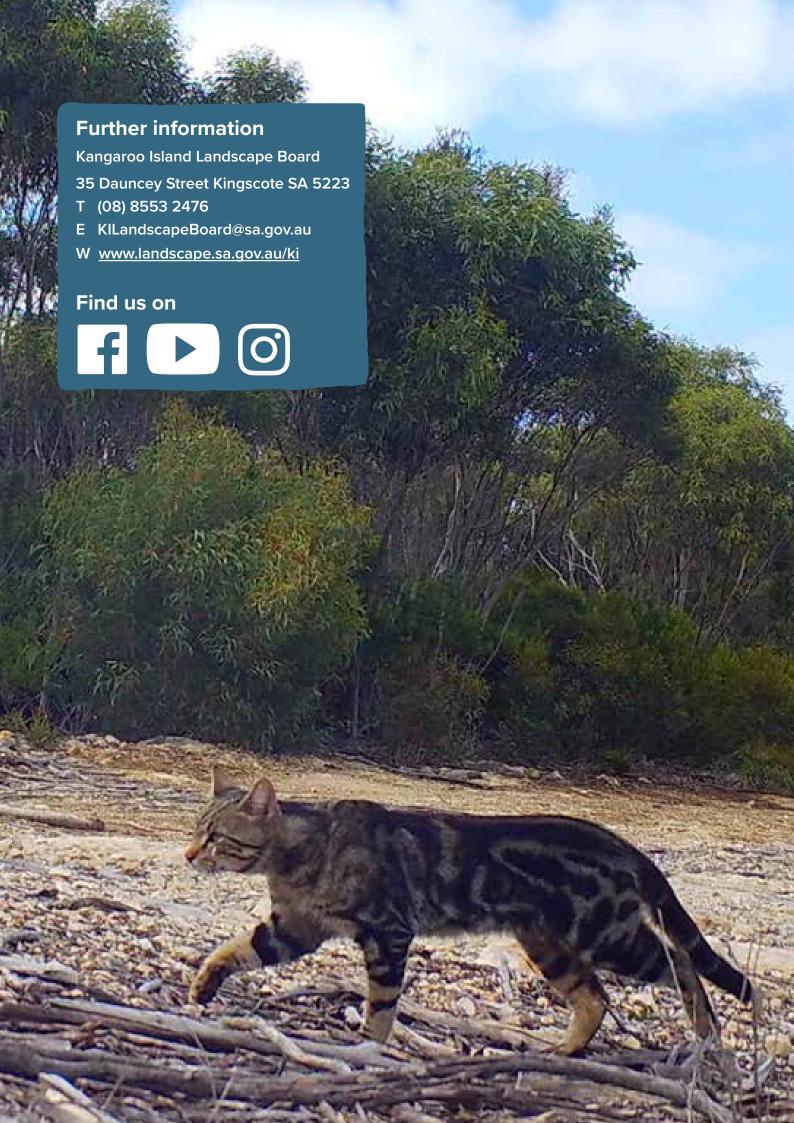
Hohnen R, Berris K, Hodgens P, Mulvaney J, Florence B, Murphy BP, Legge SM, Dickman CR, Woinarski JCZ. (2020) *Pre-eradication assessment* of feral cat density and population size across Kangaroo Island, South Australia. Wildlife Research. Vol 47. No 8. Pp 669–676. Hohnen R, Smith J, Mulvaney J, Evans T, Mooney T. (2022) Impacts of 'Curiosity' baiting on feral cat populations in woodland habitats of Kangaroo Island, South Australia. Wildlife Research. Vol 49. No 7. Pp 637-645.

Hohnen R, James A, Jennings P, Murphy B, Berris K, Legge S, Dickman C, Woinarski J. (2023). Abundance and detection of feral cats decreases after severe fire on Kangaroo Island, Australia. Austral Ecology. Vol 48. 10.1111/aec.13294.

Landscape South Australia, Kangaroo Island (2021) Dudley Peninsula Feral Cat Eradication Operations Plan: Summary.

Pacific Invasives Initiative (2007) *Guidelines* on cat eradication and monitoring techniques. https://www.pacificinvasivesinitiative.org/rce/tools/Guidelines/Guidelines%20on%20Cat%20Eradication%20and%20Monitoring%20Techniques.pdf

Ramsey D, Anderson D, Gormley A, Scroggie M, Howard S. (2022) Tools For Developing Cost-Effective Decisions For Managing Invasive Pest Eradications: Final Report For Project P01-I-005. Report for the Centre for Invasive Species Solutions.


Taggart PL, Stevenson MA, Firestone SM, McAllister MM, Caraguel CGB. (2019) *Spatial* analysis of a cat-borne disease reveals that soil pH and clay content are risk factors for Sarcocystosis in sheep. Frontiers in Veterinary Science. Vol 6.

van Aarde R. (1984) *Population biology and* the control of feral cats on Marion Island. Acta Zoologica Fennica. 172. 107-110.

Venning K R, Saltre F, Bradshaw C J. (2021)

Predicting targets and costs for feral-cat reduction
on large islands using stochastic population
models. Conservation Science and Practice. Vol 3.
No 8. e448.

