Climate Change Projections for South Australia

Dr Graham Green Principal Adviser Climate Science Department for Environment and Water

SOUTH AUSTRALIA

Climate Projections for SA

Guide to climate projections for risk assessment and planning in South Australia

Prepared by the Department for Environment and Water

August 2020

A1.1 Average annual maximum and minimum temperatures

Across all South Australian regions, annual average daily maximum and minimum temperatures are projected to increase at each of the future time horizons (2030, 2050 and 2090). The values shown in Table A1-1 and Table A1-2 are the average temperature change from the 1986–2005 baseline from six climate models (GCMs) selected for SA, and the range of average change amongst those GCMs (after Charles and Fu, 2015).

Table A1-1 Projected increase in annual daily maximum temperatures (°C) in the regions of South Australia by 2030, 2050 and 2090

	Increase in daily maximum temperatures (°C)								
NRM region	2030	2030	2050	2050	2090	2090			
	(RCP4.5)	(RCP8.5)	(RCP4.5)	(RCP8.5)	(RCP4.5)	(RCP8.5)			
AMLR	0.9	1.1	1.3	1.8	1.8	3.4			
	(0.6 to 1.1)	(0.8 to 1.6)	(0.9 to1.6)	(1.5 to 2.6)	(1.5 to 2.4)	(2.7 to 4.8)			
Eyre Peninsula	0.8	1	1.2	1.7	1.8	3.3			
	(0.6 to 1.0)	(0.8 to 1.4)	(0.9 to 1.5)	(1.4 to 2.3)	(1.4 to 2.3)	(2.6 to 4.3)			
Kangaroo Island	0.7	0.8	1.0	1.4	1.5	2.8			
	(0.5 to 0.8)	(0.6 to 1.2)	(0.7 to 1.3)	(1.1 to 2.1)	(1.1 to 2.0)	(2.3 to 4.0)			
Northern &	1.0	1.2	1.4	1.9	2	3.7			
Yorke	(0.7 to 1.1)	(0.9 to 1.7)	(1.0 to 1.7)	(1.6 to 2.8)	(1.7 to 2.6)	(2.9 to 5.1)			
SA Arid Lands	1.0	1.3	1.4	2.1	2.1	4			
	(0.7 to 1.2)	(1.0 to 1.9)	(1.0 to 1.8)	(1.6 to 3.1)	(1.8 to 2.8)	(3.0 to 5.8)			
SAMDB	0.9	1.1	1.3	1.9	1.9	3.6			
	(0.7 to 1.2)	(0.8 to 1.8)	(1.0 to 1.7)	(1.5 to 2.8)	(1.6 to 2.5)	(2.9 to 5.0)			
South East	0.8	1	1.1	1.6	1.6	3.2			
	(0.6 to 1.0)	(0.7 to 1.5)	(0.9 to 1.5)	(1.3 to 2.5)	(1.3 to 2.2)	(2.7 to 4.5)			

Table A3-1 Change in annual potential evapotranspiration

NRM Region	2030 (RCP4.5)	2030 (RCP8.5)	2050 (RCP4.5)	2050 (RCP8.5)	2090 (RCP4.5)	2090 (RCP8.5)
AMLR	+2.7	+3.1	+3.8	+5.2	+5.1	+9.9
Eyre Peninsula	+2.5	+2.7	+3.5	+4.6	+4.6	+9.0
Kangaroo Island	+2.2	+2.4	+3.1	+4.1	+4.2	+8.4
Northern & Yorke	+3.0	+3.4	+4.1	+5.5	+5.4	+10.5
SA Arid Lands	+2.7	+3.2	+3.8	+5.2	+5.2	+10.2
SAMDB	+2.8	+3.1	+3.9	+5.3	+5.2	+10.2
South East	+2.5	+2.9	+3.6	+4.8	+4.8	+9.7

Maslin Sands

Water level trends

Gradual decline of 0.04 to 0.10 m/year in response to rainfall, but aquifer >50m thick

Quaternary aquifer Water level trends

Gradual long term decline related to below average rainfall May have impacts on GDEs in long term

8

Climate Change Projections for South Australia

Dr Graham Green Principal Adviser Climate Science Department for Environment and Water

SOUTH AUSTRALIA

Climate Projections for SA	Annual and seasonal temperatures and rainfall	1981–2010 Baseline (for location)	Mean estimate of change 2030	Mean estimate of change 2050
	A	Mean daily max: 22.3	+1.1	+1.8
	Annuai mean temperature (°C)	Mean daily min: 12.2	+0.8	+1.4
and the second	Seasonal temperature (°C)	Mean daily max: 28.5	+1.0	+1.7
Guide to climate projections for	Summer	Mean daily min: 16.6	+0.8	+1.4
risk assessment and planning in	Autumn	Mean daily max: 22.7	+1.0	+1.7
South Australia	Addini	Mean daily min: 12.7	+0.9	+1.6
Prepared by the Department for Environment	Winter	Mean daily max: 16.0	+0.9	+1.6
and Water	· · · · · · · · · · · · · · · · · · ·	Mean daily min: 7.9	+0.7	+1.2
	Spring	Mean daily max: 22.0	+1.3	+2.2
August 2020	spring	Mean daily min: 11.7	+0.8	+1.4
	Mean annual rainfall	546 mm	-5.4%	-8.4%
	Seasonal rainfall Summer	63 mm	2.7%	-6.5%
	Autumn	127 mm	-4.3%	-3.9%
	Winter	226 mm	-5.0%	-5.0%
	Spring	131 mm	-10.7%	-19.6%
	Extreme temperature and rainfall events	1981–2010 Baseline frequency	Mean projected frequency 2030	Mean projected frequency 2050
	Mean number of very hot days (over 40°C) per year	2.4	4.3	6.2
a final mini Internet a citate	Mean number of very cold nights (minimum less than 2°C) per year	1.1	0	0
Government of South Australia	Heavy rainfall (mean days per year above 99.9 th percentile	0.38	0.6	0.6

	 Quaternary aquifer Water levels - declining Salinity - mostly still low (<1500 mg/l) 	
	 Port Willunga Formation aquifer Water levels - declining Salinity - approximately stable 	
	 Pirramimma Sands aquifer Water levels - declining Salinity – increasing in some areas 	
	 Maslin Sands aquifer Water levels – approximately stable Salinity – increasing in some areas 	
	 Fractured rock aquifers Water levels – stable for last 10-15 years Salinity – approximately stable 	
SOUTH Covernment of South Australia		

<section-header><complex-block>

•<u>First assessment report</u> (1990): "By increasing their concentrations, and by adding new greenhouse gases like chlorofluorocarbons (CFCs), <u>humankind is capable of</u> raising the global-average annual-mean surface-air temperature."

•Second assessment report (1995): "The balance of evidence suggests a discernible human influence on global climate."

•<u>Third assessment report</u> (2001): "Most of the observed warming over the last 50 years is likely to have been due to the increase in greenhouse gas concentrations."

•<u>Fourth assessment report</u> (2007): "Most of the observed increase in global average temperatures since the mid-20th century <u>is very likely</u> due to the observed increase in anthropogenic greenhouse gas concentrations."

•Fifth assessment report (2013): "It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century."

•<u>Sixth assessment report</u> (2021): "<u>It is unequivocal</u> that human influence has warmed the atmosphere, ocean and land."

SOUTH Government of

SOUTH Government of South Australia

IPCC AR6 - pi	rojected	global	average	temperature	changes
---------------	----------	--------	---------	-------------	---------

	Near term, 2	Near term, 2021–2040		2041–2060	Long term, 2081–2100		
Scenario	Best estimate (°C)	<i>Very likely</i> range (°C)	Best estimate (°C)	<i>Very likely</i> range (°C)	Best estimate (°C)	<i>Very likely</i> range (°C)	
SSP1-1.9	1.5	1.2 to 1.7	1.6	1.2 to 2.0	1.4	1.0 to 1.8	(implausibly) low emissions
SSP1-2.6	1.5	1.2 to 1.8	1.7	1.3 to 2.2	1.8	1.3 to 2.4	low emissions
SSP2-4.5	1.5	1.2 to 1.8	2.0	1.6 to 2.5	2.7	2.1 to 3.5	medium emissions
SSP3-7.0	1.5	1.2 to 1.8	2.1	1.7 to 2.6	3.6	2.8 to 4.6	high emissions
SSP5-8.5	1.6	1.3 to 1.9	2.4	1.9 to 3.0	4.4	3.3 to 5.7	very high emissions (unlikely)

IPCC AR6 WG I SPM, Table SPM.1: Temperature differences relative to the average global surface temperature of the period 1850–1900, reported in °C.

SOUTH Government of South Australia

- CAN

IPCC AR6 (2021) IPCC AR5 (2013) 2081 - 2100 Long term, 2081–2100 Scenario Mean Likely range Scenario Best estimate Very likely (5 – 95%) (°C) range (°C) SSP1-1.9 1.4 1.0 to 1.8 (1.6 RCP2.6 0.9 – 2.3 SSP1-2.6 1.8 1.3 to 2.4 RCP4.5 1.7 – 3.2 2.4 2.7 SSP2-4.5 2.1 to 3.5 SSP3-7.0 3.6 2.8 to 4.6 RCP8.5 4.3 3.2 – 5.5 SSP5-8.5 4.4 3.3 to 5.7 IPCC AR6 WG I SPM, Table SPM.1: Temperature differences relative to the average global surface temperature of the period 1850-1900, reported in °C. SOUTH Government of - All Alexander

McLaren Vale Water Allocation Plan Advisory Committee

Risk Identification – The Bow-tie and Risk Statements

Risk Analysis: Comparing the risk statements against impact and likelihood criteria

There is the potential that groundwater use from licensed wells leads to changes in water quality and/or quantity which results in impacts on economic use

Consequence category	Descriptor			Likelihoo category	od /	Descriptor		Probability	
	Water not available for economic consumptive use purposes. Water allocation < 30% for a			Almost o	ertain Exp	pected to occur in	all	91% - 100%	
Catastrophic	single year or <50% for two or more consecutive years, or Economic losses from impacts to ecosystem service provision including reduced productivity of			Likely	Gr	eater than even cl occurring	nance	51% - 90%	
	non-consumptive economic use and damage to assets and infrastructure with a total value of $>\$ x$			Possible	Les	s than even chan curring	ce of	26 % - 50%	
	Water not available for economic consumptive use purposes having market value \$x. Water allocation <50% for a single year or 50–75% for two or more consecutive years, or			Unlikely	Un	usual but not eptional		11% -25%	
Major	Economic losses from impacts to ecosystem service provision including reduced productivity of non-consumptive economic use and damage to assets and infrastructure with a total value of \$x			Rare	Or	ly occurs in excep cumstances	itional	0% -10%	
	Water not available for economic consumptive use purposes having market value \$x. Water allocation 75–90%, or	_	+		Insignificant	Low	Moderate	Major	Catastrophic
Moderate	Economic losses from impacts to ecosystem service provision including reduced productivity of non-consumptive economic use and damage to assets and infrastructure with a total value of $$x$$		Ve	ery Likely	low	Medium	High	High	High
Minor	Water Allocation >90 %, or Losses or damage <\$x	poor	>9 Li 60	90% ikely 0% - 90%	Low	Medium	Medium	High	High
Incignificant	No losses or damage	Likeli	Pc 33	ossible 1% - 59%	Low	Low	Medium	Medium	High
insignificant			U 10	nlikely 0% - 30%	Low	Low	Low	Medium	Medium
	Example, actual descriptors will be decided by WAPAC		V(<1	ery Unlikely 10%	Low	Low	Low	Low	Low

Risk Identification

Risk identification is the process of finding, recognising and describing risks including deciding on the important values and risks to those values.

Risk source

e.g. seasonal variability

• Event

e.g. water table decline

Consequence

e.g. economic impacts

Risk Identification cont.

- · Relevant to the resource and the water allocation plan
- · Meaningful to the WAPAC undertaking the risk assessment
- · Collectively cover the issues but can use broad statements if needed
- Multiplier effect adding extra sources, events of consequences multiplies the number of risk statements to assess
- One resource or multiple aquifers?

Risk Identification – Consequence & Likelihood Tables

Consequence tables

- Before we start on the risk analysis we need to agree on a consequence table for each consequence in the bow-tie diagram
- Fortunately I have borrowed a few examples

HILLS AND FLEURIEU

Consequence tables

Groundwater dependent ecosystems

Consequence category	Descriptor
Catastrophic	Water dependent ecosystem values destroyed or unrecoverable. Up to 80% of species lost.
Major	Significant loss of water-dependent ecosystem values. Up to 60% of specie lost. Recovery of ecosystem values not feasible over medium term (less that a decade).
Moderate	Some loss of water-dependent ecosystems values. Up to 40% of species los Recovery of ecosystem values is feasible over medium term.
Minor	Some loss of water-dependent ecosystem values up to 10% of species lost. Recovery of ecosystem values is feasible over short term.
Insignificant	Any loss of water-dependent ecosystem values is minimal. Less than 10% o species lost.

Consequence tables

Economic impact

Descriptor	
Water not available for economic consumptive use purposes. Water allocation <30% for a single year or <50% for two or more consecutive years, or Economic losses from impacts to ecosystem service provision including reduced productivity of non-consumptive economic use and damage to assets and infrastructure with a total value of >\$x	
Water not available for economic consumptive use purposes having market value \$x. Water allocation <50% for a single year or 50–75% for two or more consecutive years, or Economic losses from impacts to ecosystem service provision including reduced productivity of non-consumptive economic use and damage to assets and infrastructure with a total value of \$x	_
Water not available for economic consumptive use purposes having market value \$x. Water allocation 75–90%, or Economic losses from impacts to ecosystem service provision including reduced productivity of non-consumptive economic use and damage to assets and infrastructure with a total value of \$x	
Water Allocation >90 %, or Losses or damage <\$x	
No losses or damage	
-	Descriptor Water not available for economic consumptive use purposes. Water allocation <30% for a single year or <50% for two or more consecutive years, or

SOUTH AUSTRALIA

Consequence tables

Community or amenity values

Consequence level	Descriptor
Catastrophic	Complete destruction of amenity value of the resource. Community no longer able to use resource.
Major	Significant destruction of the amenity value of the resource. Most (80)% community uses no longer possible.
Moderate	Amenity value of the resource impacted. Community uses possible but impaired.
Minor	Amenity value of the resource impacted. Community uses possible but slightly impaired.
Insignificant	Amenity value maintained or improved.

Consequence tables

Availability for stock and domestic use (example from River Murray)

Consequence category	Description
Catastrophic	Interruption of primary supply of water to >100,000 customers for > 48 hours
Catastrophic	Interruption of primary supply of water to 10,000 – 100,000 customers for an extended period of time (> 1 week)
	Interruption to primary supply of water to 10,000 - 100,000 customers for > 48 hours
Major	Interruption to primary supply of water to 1000 – 10,000 customers for an extended period of time (> 1 week)
	Interruption to primary supply of water to 1,000 - 10,000 customers for >48 hours
Moderate	Interruption to primary supply of water to $100 - 1,000$ customers for an extended period of time (> 1 week)
	Interruption to primary supply of water to 100 – 1000 customers for > 48 hours
Minor	Interruption to supplementary non-potable town water supply
Incignificant	Internutions of primary supply to < 100 sustamors of far pariads of < 48 hours
insignincant	interruptions of phinary supply to < 100 customers of for periods of < 46 hours

elihood	Table		
Rating	Description	Probability	
Very likely	Almost certain, expected in all circumstances during the life of the plan	90% to 100%	
Likely	Greater than even chance but not certain during the life of the plan	50% to 90%	
Possible	Less than even chance but not unusual during the life of the plan	25% to 50%	
Unlikely	Unusual but not exceptional during the life of the plan	5% to 25%	
Rarely	May occur in exceptional circumstances during the life of the plan	0% to 5%	
			SOUTH AUSTRA

							cars				
0	10	20	30	40	50	60	70	80	90	100	
0	10	20	30	40	50	60	70	80	90	100	
0	10	20	30	40	50	60	70	80	90	100	
0	10	20	30	40	50	60	70	80	90	100	
0	10	20	30	40	50	60	70	80	90	100	
	0 0 0 0	0 10 0 10 0 10 0 10 0 10 0 10	0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20	0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30	0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40	0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50	0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60	0 10 20 30 40 50 50 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70	0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80	0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90	0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Consequence Level		Percent chance of consequence in 10 years									
Very high	0	10	20	30	40	50	60	70	80	90	100
High	0	10	20	30	40	50	60	70	80	90	100
Medium	0	10	20	30	40	50	60	70	80	90	100
Minor	0	10	20	30	40	50	60	70	80	90	100
Insignificant	0	10	20	30	40	50	60	70	80	90	100

NAVY LANDSCAPE SOUTH AUSTRALIA HILLS AND FLEURIEU

lisk Analysis											
Consequence Level	Percent chance of consequence in 10 years										
Very high	0	10	20	30	40	50	60	70	80	90	100
High	0	10	20	30	40	50	60	70	80	90	100
Medium	0	10	20	30	40	50	60	70	80	90	100
Minor	0	10	20	30	40	50	60	70	80	90	100
Insignificant	0	10	20	30	40	50	60	70	80	90	100

