

Water quality and ASS Ecotoxicology perspective

Anu Kumar, Hai Doan, Sonia Grocke, Deb Gonzago, Danielle Harris, Jamie Jones, Jason Kirby and Paul Shand

DEWNR-FUNDED PROJECT

www.csiro.au

Use of bioindicators

Direct toxicity assessment-surface water

Sites	Microbial	Alga	Water flea	Shrimp	Fish larvae
Dog Lake	LT	NT	LT	NT	NT
Point Strut North	LT	NT	LT	NT	LT
Artificial water	NT	NT	NT	NT	NT

NT: No toxicity

NOEC >60%

T: Moderate to high toxicity

NOEC 60-10%

HT- very high toxicity

NOEC <10%

- 1. Are contaminants generated in the system?
- 2. Are contaminants bioavailable?
- 3. Is there a measurable response?
- 4. Are the contaminants causing this response?

1-TRIAD Approach

COLLABORATIVE WORK WITH SA-EPA

www.csiro.au

Midge toxicity- whole sediment test

Red arrows represent significant effects

- → % Emergence
- % Survival
- % Male
- % Female
- Length (mm)

1- TRIAD Approach Mostly un-impacted sites- recovered

17 sites sampled in March and Nov 2013

Surface water (Bioassays) Microbial assessment (MARA) 2. Algae/duckweed 3. Ceriodaphnia dubia (waterflea) 4. Paratya australiensis (freshwater shrimp) survival and oxidative stress Native fish (Golden perch or Murray cod larvae) Sediment (top layer) Depth (cm) 1. Whole-sediment ecotox - Midge - Chironomus tepperi 10-2. Pore-water-MARA and Ceriodaphnia dubia 20-Sediment (depth 2) 1. Whole-sediment ecotox - Midge - Chironomus tepperi 30-2. Pore-water-MARA and Ceriodaphnia dubia Sediment (depth 3) 40 1. Whole-sediment ecotox-Midge-Chironomus tepperi 2. Pore-water-MARA and Ceriodaphnia dubia 50-Sediment (depth 4) 1. Whole-sediment ecotox-Midge-Chironomus tepperi 60-Pore-water-MARA and Ceriodaphnia dubia

Photo by David Robertson (2007), provided by Peter Teasdale, Griffith University)

2- Deeper sediment layers?

Direct toxicity assessment – Pore-water

Water samples	Microbial	Water flea Acute	Water flea Chronic
Boggy Creek (0-3 cm depth)	т	NT	LT
Boggy Creek (3-13 cm depth)	т	Т	нт
Boggy Creek (13-27 cm depth)	LT	Т	нт
Boggy Creek- (27-47 cm depth)	Т	Т	нт
Point Sturt North (0-12 cm depth)	NT	NT	LT
Point Sturt North (12-25 cm depth)	LT	Т	HT
Point Sturt North (25-42 cm depth)	т	нт	нт
Point Sturt North (42-67 cm depth)	Т	NT	LT
River water	NT	NT	NT

NT: No toxicity	LT: Low toxicity	T: Moderate to high toxicity	HT- very high toxicity
NOEC >100-90%	NOEC 89-49%	NOEC 50-10%	NOEC <10%

2- Deeper sediment layers?
Contaminants generated at the ASS
impacted sites at deeper sediment
depths if bioavailable, could be severely
toxic to aquatic organisms.

3- In-situ assessment-caging studies

Snail, yabby, mussel and shrimp

Snail growth in surface water collected from sites weekly collection of snails

Mussel thickness

shell thinning observed at all sites

In-situ Mussel Shell Thickness

Body burden- Mussel and yabby tissue

- 1.Lower Lakes recovering
- 2. Flows are important to maintain ecosystem health
- 3. Ecotoxicological approaches are successful in identifying hotspots and contaminants responsible for the adverse effects.

Thank you

Anu Kumar

Group Leader- Contaminant Biogeochemistry and Environmental Toxicology **Program- Environmental Contaminant** Mitigation and Technologies

t +61 8 8303 8597

e anupama.kumar@csiro.auw www.clw.csiro.au

LAND AND WATER FLAGSHIP

www.csiro.au

