

Heritage South Australia
Government of South Australia

Solver Paints

Australian made, Australian owned
WP Crowhurst Pty Ltd
Manufacturers of Solver Paints
Head Office: 560 Churchill Road
Kilburn SA 5084
Ph (08) 83681200
Fax (08) 83681222

Dulux Paints

Worth doing, worth Dulux
Contact our National Consumer Service
Toll Free 132377
for your nearest trade outlet

Murobond
Cement Paint • Murowash • Pentimento
Available from South Australian Agent:
Spence \& Reid
Parade Pavillion
9/47 The Parade
Norwood SA 5067
Ph (08) 83624722
Fax (08) 83623371

Published by

Heritage South Australia

Government of South Australia

(11)
 툰 지님

City of Adelaide

March 2000
(c) Heritage South Australia

Department for Environment and Heritage
\& the Corporation of the City of Adelaide
ISSN 1035-5138
Prepared by Heritage South Australia
Text \& Photographs by Di Robson of Luxe Design
Technical contributions by Mark Weston of Incospec
Acknowledgements: Silvana Grassadonia, Luigi Vitale, Mike Brown,
Fran Stropin, Alan Feder, Andrew Klenke, Michael Symons, Phil Burton,
Lillian Klenke, Australian Archives, The Art Gallery of South Australia,
Mortlock Library of the State Library of South Australia. The Colour
Society of Australia (South Australion Division).
September 2008
Published online with revised contact details
Department for Environment and Heritage
DEH Information Line (08) 82041910
Website www.environment.sa.gov.au
Email dehinformation@saugov.sa.gov.au
Disclaimer
While reasonable efforts have been made to ensure the contents of this publication are factually correct, the Department for Environment and Heritage makes no representations and accepts no responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of or reliance on the contents of this publication.

CONTENTS

1 INTRODUCTION

Repainting with respect
Adapting on approach
Cultural significance
A heritage listed property
A property nat heritage listed
A contemparary calaur scheme

2 COLOUR AND BUILDING
MATERIALS IN SOUTH AUSTRALIA
Early materials
The paintings of James Shaw
South Australian stone
Sondstane
Neutral calaurs
Sacial histary
Victarion era
Sauth Austrolion restraint
Twentieth Century
Federatian
Califarnian bungalaw
Sauth Australia \& 'Fadeless Green'

3 COIOUR THEORY
Calaur visian
Light saurce
Colour of objects
The viewer
Colour wheel
Subtroctive primories

Calaur rendition

Additive primories
Indirect light
Calaur properties and their effects
Hue
Responding ta the body
Complementory colours, (monochromatic
colours; analogous colours)
Warm ond cool colours,
Volue (tonol controsts; colour simplificotion)
Intensity (soturotion)
Attitudes to colour
Historic opprooches to intensity

Terminalogy

Neutrol colours
Simultoneaus controst

4 COLOUR SCHEME SELECTION
1

2
2
3
3
3
3
Docunar
Point scropes 32
Recarding 33
A canjectural scheme
(ar an 'approximation') 34
Appropriote colours 35
A cansidered cantemparary scheme 35

- the 'perpetual' ar timeless alternative

Responding to the body of the building 35
Current foshion 36
Use af neutral colours 36
Decaration 37
Examples af calaur schemes 39
5 A BRIEF HISTORY OF PAINT
Early methads
55
Traditianal paints and caatings 55
Traditianal ail paints 55
Traditianal primers 55
Taxic ingredients 58
Varnishes 58
Water-based paints 60
Limewashes 60
Cold-woter points or colcimines, 61
Distemper (size-bound, oil-bound) 61
Emulsions 61
Pigments 61
White lead 61
Zinc oxide 62
Titonium dioxide 62
Calaured pigments 62
Yellow pigments 62
Red pigments 63
Brown pigments 63
Green pigments 63
Blue pigments 63
Changes in paint technalogy 64
Paint charts 67
Standards for paint calaurs $\quad 67$
(British \& Australian standards) 67
Calaur systems $\quad 68$
Munsell system 68
NCS system $\quad 68$
CIE system 69
Decarative finishes 69
Glozing 69
Groining 69
Stippling 69
Stencilling 69
Morbling 69
6 CONTEMPORARY PAINT PRODUCTS
Paint 71
Paint campanents 71
Solvents 71
Resin 71
Binder 71
Pigments 71
Additives 71
Curing af caatings 72
Types of paint 72
Primers 72
Wood primers 72

- Orgonic solvent-bosed wood primers 73
- Woter-bosed woad primers 73
Metol primers 73
- Orgonic solvent-based metol primers 73
- Woter-bosed metal primers 73
Undercoats 74
- Orgonic salvent-bosed undercoats 74
- Woter-bosed undercoots 74
Finish coats 75
- Orgonic solvent-bosed full gloss finishes 75
- Woter-bosed exterior gloss finishes 75
- Woter-bosed interior gloss finishes 75
- Orgonic solvent-bosed semi-gloss or sotin enomels 75
- Orgonic solvent-based flot enomels 75
- Woter-based exterior flot, low-sheen, sotins and semi-gloss finishes 76
- Woter-bosed emulsions finishes 76
- Interior flot, low sheen, sotins ond 76
semi-gloss finishes 76
Timber finishes ond stoins 76
- Organic solvent-bosed cleor finishes 76
- Shelloc 76
- Orgonic solvent-bosed semi-transporent stains
- interior ond exteriar 77
- Opaque 77
- Woter-bosed exteriar opoque timber finishes 77
Silicote/Minerol cootings 77
- Limewoshes 78
- Cementicaus cootings 78
7 PAINT APPLICATION
Restraint with canservation wark 79
Wear-cholking \& crocking 79
Paint remaval 80
Hazards in paint remaval 80
Asbestas 80
Lead 81
Painting of external masanry 81
Limewash 82
Acrylic 82
Internal wall finishes 83
Kolsomine 85
Acrylic 85
Painting af metal surfaces 85
Galvonized or zinc surfoces 85
Preparing new golvanized or zinc surfoces for pointing 86
Treoting old ond deterioroted
golvanized or zinc-caated surfoces 86
Preparing steel surfoces 86
Cast iron 87
Topcoats 87
Pressed-metol ceilings 87
Painting af timber 87
Generol ond externol timber 87
Internol timber 88
Paint problems and salutians 89
Bitty film 89
Bleeding 89
Blistering 89
Bodying/thickening of paint 90
Cholking 90
Cissing 90
Cheesy films 90
Crocking (crazing, checking) 90
Discolarotion 90
Drying slow 90
Efflorescence 90
Lass of gloss 91
Kolsomine 91
Liffing (picking up, working up) 92
Mould grawth 92
Peeling 92
Soponificotion 92
Settling 92
Tronsporency (poor opocity) 93
Wrinkling 93
Yellowing 93
Pictoriol identification of point prablems 94
8 QUALITY AND STANDARDS
The Australian Standords Associotion 102
Engaging o tradesperson 102
licenses ond insuronce 102
Professionol ossociations 102
Scope of works 102
Interpretotion of quotations 102
Do it yourself 102
Quolity of paint 102
Volume salids 103
Government Point Committee approvol 103
9 GLOSSARY OF TERIMS 104
10 APPENDICES 109
10.1 Early specificotions 109
Adeloide Gaol, Architect; Kingston. 109
Residence Dr A.S Rondell, Architect; Milne. 109
Locklustre wood finishes-treatment of red pine. 112
Camputerised imoges indicating colour schemes. 113
10.2 Addresses 116
10.3 Further items of interest 116
Durobility 116
Intensity 116
Colour mixing 116
Old point chort 117
Point \& pigments (old orticles) 118
NCS Colour System exercise 123
10.4 Recipes 124
Limewosh recipes 124
Chocolote paint for houses ond barns 124
Hints on using whitewosh 124
Size 125
Copal vornish 125
11 BIBLIOGRAPHY 125
12 FURTHER READING, 127

1 INTRODUCTION

Repainting with respect

The repainting of a building is an important component of the overall conservation of old buildings.

First, paint physically protects the building; and secandly, it affects the way we regard a building. It influences our attitude. Colour has a very strong and immediote impact and, as a design tool, can establish or reinforce architectural form ond meaning. With some thought and research, painting of older buildings can be a most rewarding experience.

In this document the emphasis is on presenting information which is most pertinent to South Australia. Although some general informotion is included for interest, references for further reading have been given for those areas which are known to be well covered by other publicotions.

There are severol approaches to painting older buildings, and it is hoped that an owner will be guided to one most appropriate for the particular circumstances.

The approach taken in choosing on oppropriate colour scheme for an older South Australian building should take into account its culturol significance, history, materials (building fabric), and use as well as its cantext.

A successful built environment needs a sense of continuity. This requires evidence of both the old and the new. 'Visible reminders af the past act as a stable and relevant bockdrop to the activities of the present. ${ }^{\text {' }}$

Since the 1970s there has been an increasing awareness of the value of appropriate paintwork on older buildings. Information has become mare widely available in the farm af publications on the subject as well as guides developed by paint manufacturers ${ }^{2}$. The range of colours now available is vast and the possible colour schemes are therefore endless. Nonetheless, there has been a grawing tendency to limit colour.

In relation to the repainting of older buildings, one often hears the term 'heritage colours'. Unfortunately, it usually does not refer to the original colours of o building. Most often it is a somewhat clumsy, loase use of certain standard ranges of colours.

The colours themselves, within these ranges, moy have been arrived at by investigotion of original paint samples and so be appropriate for reference.

Frequently though, these 'heritage colours' are used without adequate research into the style of a particular building, or into any remaining historical evidence, such as remnants of original colours.

As well as being used inappropriately on older buildings, such colour combinations have also been used haphazardly, not only on reproduction buildings, but on oll manner of other more modern buildings.

The end result of this fashion for 'heritage colours' has been an outbreak of unfortunate-looking schemes, largely in red, green and yellow, which work entirely against the intention of enhancing older buildings.

This publication seeks to redress such erroneous approaches and 'heritoge' misconceptions, and to provide o bosic comprehension of colour and its impact upon older buildings.

It aims to assist in the confident use of appropriate colours beyond the standard schemes so commonly adopted without thought to particular circumstances.

The quolity of paint schemes can be improved enormously, simply by approaching the task in a more individual manner. Each particular building should be assessed on its awn merits, and an attempt made to arrive at an apprapriate solution for that building.

It is haped that with increased sensitivity to the nuances af calaurs ond their cambinatians that the repainting of alder buildings, and, so, the altering af the streetscape, will pravide varied delight and cantribute ta aur angaing architectural heritage.

Adapting an approach

Frequently a property awner needs ta paint a building an which there is na evidence of farmer calaurs. Paint fram timberwark may have been remaved entirely, and the walls and quainwark 'cleaned' ta substrate at same time in the building's histary.

In this situatian there are twa camman and diverse respanses. One is the adaptian af a standard 'heritage' calaur scheme. This invalves strict adherence ta the applicatian af limited and standard calaurs, identified as having been in use when the structure was campleted - usually in the nineteenth century.

The other is ta adapt a subjective appraach, emplaying personal likes and dislikes in calaur.

Adapting the first, and mare limited, appraach denies the fact that ariginally there wauld have been cansiderable subtle variatian in calaurs. The calours were generally mixed an site by competent painters wha, while canforming ta accepted practices and aesthetics of the time, were required ta shaw initiative.

This appraach alsa denies the spirit at the time, which was ta embrace advances - new calaurs were continually being accepted and incarparated.

Taking the mare arbitrary appraach denies the intrinsic character of a particular building. The historical value of an older building within a streetscape may be easily lost when the repainting is not respectful ta the cultural heritage of that building.

Cultural significance

Cultural significance is the value of the property to present and future generatians. The cultural significance of the property is invariably given tangible expression in, and represented by, the
physical material of the praperty. Changes ta this material such as pointing can remove ar amend that cultural significance, and its appreciatian. It is therefare impartant that planning far change allows far a detailed understanding of significance.

The first twa steps in arriving at a mare apprapriate approach are

1. ta ascertain why a building is histarically impartant, and haw this is reflected in the extant fabric;
2. ta develop palicies which will assist in its canservatian. These palicies wauld relate to preservatian and maintenance.

The approach to repainting will naturally be directed by thase palicies.

The term 'fabric' af the place means the physical material, the management af which is critical ta the survival af the cultural significance of the place.
'Preservation' means maintaining the fabric af a place in its existing state ta retord further decay ar deteriaratian.

Preservation needs shauld be identified in the pracess af planning, and it may well be that particular areas at craft; ar decaration; ar evidence af porticular patterns af use; ar histarical assaciatian need ta be preserved intact
'Maintenance' means the cantinuaus pratective care of the fabric and its setting, ond is mare similar ta the pracess of preservatian than the pracess af repair:

- prepare a specific maintenance schedule for the place
- avaid unnecessary replacement and repair;
- avaid the use af modern materials just ta reduce maintenance cycles.

A heritage listed property

A heritage listed praperty will have had its value defined in aesthetic, historic, scientific ar sacial terms.

The evaluotion will help determine which parts of the building 'best represent the history of the property, and therefore contribute to its cultural significonce ${ }^{\prime}{ }^{4}$

The meaning of the term 'cultural significance' in relation to the paint colour could be debated. Building conservationists are likely to argue that, where the history of a heritage listed property is of prime consideration, repainting appropriately is impartant, and the colours should be those sparted when the building was at the most significant time in its history. Accordingly, physical evidence of earlier colour schemes assumes a greater importance. Where there is insufficient earlier evidence, it would be reasonable to adopt a scheme based on informed conjecture.

A difficulty with the concept of 'cultural significance' is in deciding 'significant' to whom. A prominent public building which has been painted a certain, albeit 'incorrect', colour for decades, for example, may then have assumed cultural significance for a cammunity who could object to a change in colour-even one deemed 'correct'.

A property not heritage listed

When a property is not heritage listed, and its cultural significance not so clearly defined, it is still necessary to establish its heritage value as accurately as possible. Local government and historical societies may be of help in this quest.

Evidence of earlier schemes could be taken into account. Typical approoches to painting a building of such age, style, construction, use ond locotion may also be taken into account. Publications on the repainting of buildings of different eras are readily available and same are listed at the back af this document. See Further Reading.

When making reference to colour schemes originating from other States, care should be taken. These often apply to buildings that are constructed, ar even designed, differently from those in South Australia. Colours which are successful on a building that has painted timber walls, for example, will look entirely different when used on a building constructed of local stone. (See page 20)

At the time many older buildings were first painted, subtle voriotion in schemes would have resulted from the paint-mixing methods employed. The application of standardised period colour schemes can result in the loss of that varietal chorm.

Whichever approach is taken when painting, respect for the history of the building, and particularly any historical evidence in the fabric of the building, is warranted.

It should be a prime considerotion to retoin such evidence where it is possible, and to record it adequately where it is not.

Currently in South Australia there is a proliferation of new 'Federation' style buildings with curved verondahs ond simulated stone walls complete with finials and red and cream, or green and cream, colour schemes. Just as pseudo styles detract from original buildings, so the adaptation of 'heritage' colour schemes for these new buildings detracts from the impact of similar schemes, that have been used oppropriotely on genuine old stock.

A contemporory colour scheme

An owner of an older building may choose to use a contemporary colour scheme.

While a successful colour scheme based on historic evidence conveys information about earlier periods, a contemporary scheme moy speak of todoy and still be respectful to on older building.

Whichever approach is deemed appropriate for the circumstances, success relies on an understanding of the nature of the building: its history, fabric and farm, as well as its place in the streetscape.

The task requires thoughtful consideration, a degree of skill and confidence with the colour selection process.

Reference notes:

1. Howard Tanner and Philip Cox, Restoring Old Australian Houses \& Buildings: an Architectural Guide, Macmillan, Melbourne, 1975, p. 138.
2. See Further Reading.
3. Heritage Conservation Leaflet 1.2 Guidelines to approaches for conserving heritage places.
4. ibid

2 COLOUR AND BUILDING MATERIALS IN SOUTH AUSTRALIA

Accurate determination of original colour schemes is often difficult for various reasons. These include lack of documentary evidence; lack of standards for paint colours at the time; photographs being ovailable only in block and white; and physicol evidence having been removed or significontly altered.

In order to establish how paint colours were used habitually on alder buildings, a great deal af research is required. Possibly because of the size of populations and associated interest in original colour schemes, more informotion is availoble on buildings in New South Wales and Victorio than is availoble on those in South Australio. As a consequence, authentic prescriptive calaur schemes for the various styles or periods af South Austrolian architecture can not be farmulated.

This may be regarded as a pasitive situotion in that each building should then be approached individually, and so the danger af relying on relatively limited colour schemes may be ovoided.

Nevertheless it is a fact to be celebrated that different environments do display charocteristic colour, and in South Australia distinctive colour is certainly apparent in the building materials and associoted pointwork.

Awareness of this signature colour is of ossistonce when assessing individuol buildings. It is possible to establish potterns from those documented Sauth Australian examples which are available, and observations may be made of the building material/paint colour combinations which have been, and continue to be, both successful ond characteristic af this State.

Originally most paint materials came to Australia from England, which has very different environmental conditions.

Early paint colaurs in Australia were very limited, being thase which cauld be 'mixed fram the camman pigments; such as white, black and the earth colours. Only the wealthy cauld offord expensive pigments such as the blues, greens and yellows.'

The common colouring in use obout London is composed of whitening mode from cholk or other lime, chorcool, or yellow ochre, ond copperos, in proporfions occording to the colour which it is desired should prevoil.

Generolly, early colour schemes in South Australio were similar to those of other States. Nonetheless the climate and geographic isolation of this State, as well as the consequent limited avoilability of materials, meont thot distinct variations occurred.

As South Australia developed, differences were reflected in the woy building colour wos used.

Early materials

Very early buildings in South Australia relied on the natural resources of the areo ond so were mainly built of stone or timber and bricks, which were produced soon after settlement.

Some pianeers brought prefabricated timber houses with them fram Europe; some canstructed light-framed cottages built from sawn timber imported from Europe and America; and more primitive types of rimber structures were built using slabs ar split logs mode of local timber.
D.W. Berry and S.H. Gilbert, describing early mid-narth cottages of native pine, state that:

At one end, the moss of the greot stone fireploce and its chimney supported its shore of roof. The walling stones were embedded in pug and ran post the froming posts externolly but abutted them internolly. Generous coots of limewosh gove o pleasont texture to inner wolls. Soilcloth stretched between the roof trusses ond a few intermediotes provided a fine ceiling when limewashed. :

Mention was also mode af a whitewoshed rope that ron oround the wolls of ceiling level forming on 'intriguing carnice'.

Performance and availability were critical factors in selecting building elements. Materials were used in a straightforward manner and finishes were natural. Framing on South Australian, German style, halftimbered houses utilised 'Eucalyptus camaldulensis', or river red gum, for example, which was dark red when newly sawn, but soon changed to grey when used externally.

Local sands, which were used to colour mortar when pointing stonework, varied considerably.

Whitewash, hessian and Indian matting were common interior finishes, and flagged stone or polished hardwood was used as flooring. Earth floors were used in many cases, and at times were stabilised using an ox blood and dung mixture.

Stucco was used for rendering rough earth, poor brick, or rough stone walls to improve waterproofing properties and gave a good finish. Offen limewash was used as a final covering.

This was made by dissolving unslaked lime in clean water and splashing it on the wall before the stucco was dry. By this means the stucco set hard and the whiteness was incorporated so that it never washed off. ${ }^{4}$

The recipes for this varied considerably. Examples of limewash recipes are given in Appendix 10.4.
'Black Hill' is a property at Montacute where building commenced in 1841, and is described as 'built of stone, the walls are plastered and the colour washed to an off-white shade.' s

Of the earlier timber buildings, the light-framed cottages made of soffwood were originally painted to protect them from deterioration. Early colour schemes were very simple.

Piccadilly Valley, early settler's hut.

Materials such as stone, bricks, galvanised
roofs, shingles and slates were often leff unpainted. The appeal of such natural finishes can be appreciated in the works of painters of the times, such as James Show (1815-1881)

A house in Osmond Terroce, Norwood
Source: Art Gallery SA

The Tannery
Source: Art Gallery SA

Myrtle Bank
Source: Art Gallery SA

Smith Homestead, Smithfield
Source Art Gallery SA

Hasling House, Mitcham
Source: Art Gallery SA

Although paintings of the time were usually
representational artists licence could meon the actual point colours might have differed from those shown:

Local timber was scarce and imported timbers, which were offen Baltic in origin, were relatively expensive. Other coniferous timbers from the American State of Oregon were also in use from the 1860s. 'Douglas Fir' is an example.

South Australian stone

Although the early use of timber for construction was more common in South Australia than we now imagine, building stone was always abundant and was used widely, not just as a luxury. The first brickworks here were established in 1837, and the burgeoning building industry made good use of building stone and brick. These readily available materials gave a feeling of permanence to the structures, and had the secondary advantage of not being vulnerable to termite attack.

Early buildings were composed of irregular rubble with randomly shaped stones bedded in thick mortar, which was smoothed approximately to the face of the stone. Builders used bricks to form surrounds to doors and to windows, and often for quoins at corners to give a good edge. ${ }^{\text {. }}$

This once necessary practice has remained characteristic of many South Australian buildings.

From 1836 local bluestone was in use, as was limestone, and after 1855 the sandstone, which is so characteristic of South Australia, became popular.

Sandstone is a sedimentary rock composed predominantly of quartz (sand) grains, though many have high proportions of feldspar and clay. The natural elements that bind the granular material include silica, clay, calcium carbonate and iron oxide.

Sandstones are generally light-coloured off-whites, creams, and pale pinks and browns. They often show stronger colours associated with iron-oxide figuring, which, unlike bluestones, is dispersed through the body of the stone and gives rise to banding and wavy patterns which are offen mistaken for the natural bedding of the stone. Sandstones can sometimes be distinguished from each other on the basis of grainsize: many nineteenth-century (hand-dressed) stones were very coarse grained (e.g. Mitcham and

Mt Lofty sandstones) while more recent (sawn) stones are finer grained (e.g. Basket Range in the Adelaide Hills where building sandstones are still worked).

With the sandstone and red brick quoins, a typical combination of materials was established - one that was warm and colourful.

The limited range of pigments commonly available meant that mostly neutral paint colours were possible. Such colours suited the combination of building materials well.

Neutral colours

A list of external colours on Adelaide buildings $1850-$ 1870, compiled from a study of paintings by James Shaw, indicates a predominance of neutral colours.

Charcoal, grey, off-white, and cream are the most frequently noted paint colours. The unpainted walls are generally either bluestone or sandstone together with red brick quoins.

Green is noted as light and dark stripes on verandah roofs, and as a colour on shutters.

In combination with bluestone walls, both cream and yellow ochre/brown are mentioned as quoin colours.

Red is noted as a door colour - 'Dull Red'.

Neutrol colours such os chorcool ond creom, together with earth colours, have been used for mony yeors in combinotion with South Austrolion sondstane. Not only ore the colours understated, ollowing the stone to feature, but the tonol voriotion thot is possible ollows interest from odequote controsts. The moteriols used to ochieve these colours are stoble ond long lasting. Arguobly, this is o most successful combinotion of colours ond moteriols ond one that is distinctively South Austrolion.

It is o logicol solution. Apart from suiting the lacol moteriols, such neutrol colours were populor in the nineteenth century in mony parts of the world. Lighter colours ore still the most durable becouse they reflect ultroviolet light ond heot.

Roger Moss, co-outhor of 'Victorion Exterior Decorotion', is quated in on American publicotion on exteriar point colours: 'One of the most popular calar combinotions of the 19th century wos grey ond white. It wos easy to mix, easy to touch up ond it stood up well. . ${ }^{8}$

An indicotion thot grey hos been, ond cantinues to be, o populor calaur for roofs in Sauth Austrolio is apporent in the foct thot the Colorbond (a commonly used, precoloured roofing moteriol) colour 'Slote Grey' is o stondord colour in this Stote but not in the ather Stotes.

Note: Eorly specificotions relating to the painting of buildings, porticulorly domestic buildings, cammonly referred to the number of coats of point to be applied, for exomple two coots. Reference wos olso mode to the number of shodes (meaning colours), for exomple three shodes; ond even of times to the monufocturer af paint or vornish ta be used, but often not to the octuol colours. Beautifully penned in langhond, such specificotions as those of the Adelaide orchitect, Tillett, of best mention 'opproved shodes'.
'All white leod to Johnsan's or opproved ond oils ond stoiners of best quolity. Vornish to be Turner's best corrioge.'
Compbellown Methodist Church by J.A. Tillett.
'All outside ond inside woodwork where showing to be pointed in three coots Berger's point of oppraved shodes.'
Methodist Sundoy School, c. 1903, Tillett. ${ }^{\text {. }}$

Early constructional drowings for South Australian Post and
Telegraph Offices. Note that the colours indicated merely represent building materials. Nevertheless, it is apparent that the buildings
were constructed of stone with brick or rendered quoins.

Appila, Yarrowie Post and Telegraph Office
Source: Australian Archives

[^0]Source: Australian Archives

Burra Post Office
Source Australian Archives

Social history

The social history of South Australia varies from other States. A significant difference is the nature of settlement - immigrants had come freely to the colony, Early residents have been described as industrious, modest and sober, and these characteristics are reflected in the simplicity and restraint generally asso. ciated with the architecture.

From the beginning the SA venture had included families of industrious Lutheran Germans. Such people left a legacy of tidiness, cleanliness and order which permeates the State to the present day."

Freeland speaks of the 'refreshing and sparkling architecture of South Australia', and attributes that freshness partly to the lack of smoke from heavy industry. He notes of South Australian buildings in the 1880s:

They were simply planned, functionally finished and solidly built. The typical home was a single-storeyed cream stone rectangular box with brick dressings to the openings and corners, a symmetrical arrangement
of doors, windows and chimneys, and with a wide neat cast iron verandah stretched across the long street face.

Victorian era

In mid-Victorian Australia (1860-1880) there were changes in the way colour was used on buildings. Finely finished mouldings were possible in the 1860s, and detailed decoration was picked out in a variety of colours. These were offen rich colours and were also found in the new wallpopers of the time.

The increased use of colour inside of buildings has been related to the 'new strong gas lighting' of the 1860s, the explanation being that pale, reflective surfaces were no longer as important as when tallow candles were the only light source,
With increased prosperity and sophistication, Victorian society exhibited its now well known love of ornament and colour and, in the 1880 s , demand for architectural colour in Australian buildings generally grew. In particular the number of colours used increased.

More exoggeroted displays of colour were usuolly ossocioted with the gronder buildings of the time. South Austrolio hos fine exomples of such decorotion but 'despite some grond buildings, boom period architecture in Adeloide wos not os flamboyont os in wealthy Melbourne.' ${ }^{13}$

Freelond writes of the High Victorion excessive love of voluptuousness, ond then observes:

Only in South Austrolio wos there a significont local development of voriance with the generol trend. South Australion orchitecture of the 80s wos comparatively direct ond simple, lorgely ovoided shom ond was strongly regionol in its expression. ${ }^{\text {id }}$

Regionol differences were opporent in such moteriols as cost iron, which wos widely used as decorotion (and often pointed in dork colours).

It remoined lighter ond more refined, ond its pottern wos generolly mare geametric in Sauth Austrolia, where supplies continued to come from England. In comparison, the cost iron produced in New South Woles ond Victario wos considered clumsier ond more florid in design. ${ }^{\text {. }}$

The notion of refinement is taken up by F.W. Dancker, on early orchitect of Covendish Chombers, Grenfell Street, Adeloide. In his 1904 book, Modern Dwellings - 100 Selected Designs, he reveals his own inclinotions, ond perhops reflects locol ottitudes of the time, when he writes:

During the last decode mony well-plonned and ortistically treoted residences hove been erected around the city which hove evidently colled forth the study of ort ond the planning of buildings with o tendency towords purity of design, showing on appreciotion of oll that ministers to comfort ond luxury, ond adding every year to the veritable houses of ort exhibiting refined toste ond oesthetic ospirotion, with which moy be controsted a sprinkling of goudily coloured structures, whose cheap and eccentric features scream oloud for attention.

Our endeavour is to produce designs whase only ornoment is comprised in refinement of the graceful lines af strictly utilitarian features withaut assertive attempt at effect, but
always pleasing in its subdued natural
tones, without deception in moteriol nor disguise in construction, but throughout honestly indicating its purpase. (emphosis odded)

Miles Lewis ond Alisan Bloke in the publication Exterior Point Colours (A Guide ta Exteriar Calours for buildings of the Victarion Period), published in 1977 os o Technicol Bulletin of the Notionol Trust Of Austrolio (Vic), list the following colours:

1. Off-White
2. Cream
3. Light Stone
4. Light Brown
5. Rich Brown
6. Indion Red
7. Purple Brown
8. Dork Green
9. Prussion Blue
10. Light Green
11. Block
12. Slote Grey
they then indicote that on wolls only Cream and Light Stone were oppropriote (with Light Stone, Rich Brown ond Indion Red included for 'restricted use'). More colours were suggested os being oppropriate for joinery ond signwriting, nomely: Off White, Cream, Light Stone, Light Brown, Rich Brown, Indion Red and Purple Brown (with Dark Green, Prussion Blue ond Block included in the 'restricted' cotegory).

For roofs the nominoted apprapriate colours were limited to Light Stane, Indion Red ond Slote Grey. The orgument given is thot olthough ather colours were ovoiloble, they were more expensive ond sa presumobly less common.

Striping wos o proctice imported from Englond early in the nineteenth century ond which remained current until ofter 1900. Both verondohs ond moin roofs were striped, but striping wos much more common for the former. The colours most cammonly used were indion Red ond White (or Off-White) but cream wos olso used for the light stripes ond greens ond browns were probobly used for dork stripes. Individuol stripes were not usuolly greoter thon the width of o sheet of corrugoted iron less overlop - thot is, not more thon obout 80 cm . ${ }^{\text {io }}$

Striping was said to be copying the effect of striped canvas.

Although Lewis and Blake's document was compiled in Victoria, the principles contained are general for Australia and pertinent to this State. Some variation in the application of colours is to be expected in response to locol factors. (See Colour Theary Hue.) Walls are mentioned as being painted, for example, where in South Australia the walls would generally have been unpainted stone, and the colours applied to other building elements would have been considered in relation to that stone.

Note: Before 1930 (and prior to the use of alkyd resins) the binder of paint was usually a linseed, or some other oxidising oil, product. These paints performed poorly upon exterior exposure, unless metal pigments - such as red lead, white lead or micaceaus iron oxide - were incorporated. As o result there was a very limited selection of colours available for exterior exposure.

Twentieth Century

There was a swing to simplification in the use of colour at the turn of the century that was not confined to this State or this country.

As the 19th century woned, the trends in exterior colors moved owoy from oggressive, multicolor schemes. House bodies in fewer colors were more the vogue - mossy greens for the Shingle houses for exomple, or ubiquitous white ogoin for the rising Coloniol Revivol style.

Richard Apperly, when writing of the Federation period in Australian housing - spanning the two decades from the early 1900s to World War 1 - comments on the change of external colour os a result of the introduction of terracotto Marseilles tiles from France. The orange of the tile contrasted greatly with both grey slate and with iron, which wos generally used as roofing material.

Aestheticolly, the sollow oronge of the Morseilles tile moy not hove been the ideol complement to red Queen Anne brickwork, but to the speculotive builder ond his customers the tile hod much to recommend it.:
Timber window frames and sashes were said to have been painted white, ivory or cream to contrast with the brickwork.

Apperly then gives Adeloide as an example where local conditions modified the general characteristics of suburban houses of the federation period.

Locol limestone wos o populor moteriol for wolls, with quoins ond dressings in face brick or stucco. Morseilles tiles hod to be brought by roil from Melbourne; consequently corrugoted iron wos frequently used for roofing. These two factors olone were enough to moke mony Adeloide houses look very different from those in Melbourne, Sydney or Perth.'

Stone continued to be used os o building moteriol in some South Austrolion Bungobw residences 11916 1930). Although predominontly of red brick, the bungolow often hod a freestone feature front woll, especiolly in the lorger or superior exomples, where terrocotto tiled roofs were olso common. The Austrolion version of the Colifornion bungolow hos been described os solid ond weighty with pebbly roughcost wolls or clinker-brick wolls ond 'timber trim pointed dork brown or green. "

Freeland comments on Californian bungalows generally that the colour 'instead of hot redness was dark greys and browns', ond then specifically: 'In Adelaide the bungalows were built of rough local bluestone or the sawn pale buff-coloured stone materials which distinctly characterize the city at any period.".

Bungalows in Adelaide are distinguished by the local sandstone. Again it could be expected that, in the application of colour to these buildings, this factor would be taken into account.

Adelaide sandstone bungalow

South Australia and 'Fadeless Green'

Factors contributing to the use of specific paint colours on buildings can be unexpected.

With the dry State of South Australia having warm, sand-coloured stone, and the painters of last century being skilled with colour application, it could be anticipated that colours chosen here might, for balance, have favoured the cool side of the colour spectrum.

The confiscation of a cargo load of minerals on a ship is a less likely reason for the proliferation of distinctive paint on South Australian buildings. However, urban mythology has it that, towards the end of last century, a large quantity of green oxide pigment was taken from a ship at Port Adelaide because of a failure to pay certain shipping/repair charges. The cargo, which had been en route from Europe to South America, then languished in store for decades until it was finally analysed and manufactured into paint. The resultant colour was known as 'Fadeless Green' and, because of the quantity involved, stocks lasted for many years.

Keith Gehrig, in discussing paint pigments, writes of the introduction in the 1800s of examples such as crimson antimony, zinc chromate, cadmium yellows and emerald green, but makes the point:

It must be remembered, however, that it was well into the 20th Century before such colours as blue, red and some greens could be produced in a quality that would withstand prolonged exterior exposure.

He adds that the first red, green and blue to reach the market in ready-mixed paint were called 'permanent red', etc.

In summary:
Colour on older buildings in South Australia is recognisably different from that of other areas, and this has come about because of various influences, including the nature of the building materials; the limited early pigments; the dry climate; and the social history of the State.

The local stone and largely neutral paint colour schemes are characteristic and successful, and they continue to be employed on many older buildings. Although a great deal of information is now known about original colour schemes, especially in other States, there is still insufficient documentation of early colour schemes which are specifically South Australian.

Generolised period colour schemes ore not necessorily based on locol informotion. It is desirable thot evidence that is uncovered in this Stote be preserved ond documented

Reference notes:

1. Keith Gehrig, A Guide to Troditionol Pointing Techniques. Research Study No. 9, The Heritoge Council of New South Wales, 1985, Preface.
2. J.C. Laudon, An Encyclopoedia of Cottage, Form, and Villo Architecture ond Furniture. Longmon, London. 1833, p. 262 (535)
3. D.W. Berry ond S.H. Gilbert, Pioneer Building Techniques in South Austrolio, Gilbert-Portners, Adeloide, 1981, p. 12.
4. ibid., p. 84.
5. ibid., p. 86.
6. John Freeland, Architecture in Austrolio, Penguin, 1981, p. 186.
7. Technicol Note 3.6, Stane Mosonry in S.A.
8. Gordon Bock, Old-House Journal U.S.A.'Choosing Exterior Point', 1996, p. 55.
9. PRG 353/1/6-7 Compbelltown Methodist Church Sunday School, c. 1903, Architect J.A. Tillett.
10. Freelond, op. cit., p. 186.
11. ibid., p. 187.
12. ibid., p. 149.
13. S. Marsden et ol., Heritoge of the City of Adeloide: on illustroted guide, Adeloide, The Corporotion, 1990, p. 32.
14. Freelond, ap. cit., p. 185.
15. ibid., p. 151.
16. Miles Lewis ond Alison Bloke, Exterior Point Colours, Technicol Bulletin 1.2, Austrolion Council of Notionol Trust, p. 7.
17. Bock, op cit., p. 52.
18. Robert Irving, et ol. (Apperly), Austrolion House, OUP, 1985, p. 100.
19. ibid., p. 104.
20. Irving, ap. cit. (Stopleton), p. 119.
21. Freelond, op. cit., p. 231.
22. Gehrig, op. cit., p. 17.

3 COLOUR THEORY

Some understanding of broad principles is helpful in arriving at a successful colour scheme. It helps in assessing the impact a change of colour will have upon the building, furnishings, and presentation generally.

If the building is of special cultural significance, and the original paint scheme is identifiable, the colour may be considered established. In all other cases, when it is not the intention to faithfully replicate colours, some understanding of colour is of great assistance.

This is particularly important when it has been decided to adopt a contemporary approach, without deference to former colour schemes.

In most cases evidence of previous colour schemes has to some extent been destroyed and, depending on the conservation policies for the building, decisions need to be made about colour selection and application.

Although publications on general colour schemes exist and may be helpful in giving direction, still the particular circumstances of the building, its peculiarities and subtle variations, need to be considered.

When standard combinations of colour are used in a simplistic way, as is common, the potential of many buildings is not fully realised.

A building may have interesting features, such as distinctive iron lacework or decorative timber elements, for example. The effect of these will be lessened if they are not duly acknowledged in the colour selection process.

Approaching each particular building individually helps in achieving a more appropriate solution.

Colour vision

Colour is a wonderful visual experience that changes according to the place and light in which we see it. In fact, there are three factors involved in the perception of colour namely; the light source, the object and the viewer.

Light source

Light is required before colour may be perceived. The visible energy that the human eye is adapted to receive is composed of different wavelengths. We associate these wavelengths with different colours. The retina of the eye receives the energy, which, as a nerve signal, is transmitted to the brain, where it is interpreted as a particular colour.

Colour of objects

Objects and their colourants are materials that modify the incident light. Light passes through the material; is completely absorbed by the material; or, most commonly, is scattered or reflected by the material.

A colourant can be applied to the surface, like paint, or it may be integrated, such as in stone. Colourants 'are the substances or materials that modify light by absorbing some wavelengths and reflecting others'.

The process of absorbing and reflecting light is complex and, so, a colourant may reflect a number of wavelengths. One colourant may reflect mostly blue wavelengths with a little of the green wavelengths, while another colourant may reflect mostly blue wavelengths but with a little of the red, and so the blues will differ.

Colour Vision

The viewer also brings to the experience preferences that may be culturally based or may be merely personal associations of certain colours with certain experiences.?

Psychological as well as physical aspects come into play.

Subtractive primaries

Artists' pigments are an example of colours that are seen as the result of the absorption of light. Such colours are known as subtractive colours; that is, the colourants 'subtract' or absorb some wavelengths. Primary subtractive colours are Red, Blue and Yellow.

Holtzschue writing about Primary and Secondary colours made the following points:

Red, yellow and blue are the primary colors of the artists' spectrum. They are the simplest hues. They cannot be broken down visually into other colors or reduced into component parts. They are most different from each other because they have no elements in common, All other hues are derived visually from red, yellow, and blue.

Green, orange and violet are the secondary colors. Each is the visual midpoint between two primary colors - an even interval between two primary parents. A secondary hue is visually 50 per cent of the primary on either side of it.

Green is the middle mix of blue and yellow. Orange is the middle mix of red and yellow. Violet is the middle mix of blue and red.'

The three primary colors - blue, red and green - when mixed equally create white. In combinations of two they create complementary colors - blue and red make magenta, green and red make yellow, and blue and green make cyan. This is the additive process. In the subtractive process, complementary colors subtract from the white light to produce the primary colors and black. ${ }^{\text {² }}$

Additive process

[^1]
Colour rendition

Additive primaries

The colours resulting from the combination of separate wavelengths of light are known as additive colours. The three primary colours of light are red, blue and green and the outcome when mixing them is quite different from the outcome of mixing paints (which are dependent on the absorption/reflection of light). For instance, when the blue and green wavelengths are combined, a blue-green colour called cyan is the result. When the red and blue wavelengths are combined, a red-violet called magenta results. But when the red and green wavelengths are combined the resultant perception is yellow.

All additive primaries (primary colours of light - R, B \& G) must be present in the light source to enable all colours to be seen.

Some streetlights, such as sodium vapour lights, which are missing some wavelengths, can have an enormous effect on the colour of the objects illuminated by them. In building interiors, the colour of the light source can also affect the appearance of colours.

Indirect light

Light reflected from a broad surface onto a second surface can change the colour of the second surface, depending on the effect of the first. When light is reflected off a reddish-coloured wall onto a white chair, for example, that chair would have a pink cast. This is because a white surface reflects any wavelength so the predominantly red light is reflected again. Further, if the chair were green and had a red light falling on it, the chair would appear dull with the green colour being 'neutralised', so to speak, by the red. ${ }^{5}$

The effects of indirect light can be observed in areas of abundant foliage. Green light from the foliage may be reflected onto adjacent walls or even into the building interior, making a white surface appear green, and so on.

This phenomenon was used to advantage with the tradition, carried into this century, of painting under roof eaves the colour Eau-de-Nil (water of the Nile), a pale green, which was usually somewhat muted. The effect was to cast a cool light both onto the exterior wall and in through exterior windows.

Examples of Eau de-Nil' colours

Pale Eaurde-Nil

Opaline Green

Dulux Juniperberry

Colour properties and their effects

Earlier painters were often skilled colourists with the same problems as those we face today. Essentially they are:

- Which colours to use and in which combinations?
- How light or dark should the colours be and which areas are to be light or dark?
- How pure, bright, intense or subdued should the colours be?

These questions are directly associated with the three basic properties, or qualities, of colour:

- Hue - the essence of the colour; namely, yellow, green, etc. It relates to wavelength.
- Value - the relative lightness or darkness of the sample.
- Intensity - (saturation or chroma) describes the purity of a colour - its dullness or brilliance.

Hue

Some buildings are without colour, in the sense that they are finished entirely in black, white and perhaps grey. Generally, however, hue is a critical component of a colour scheme and, when correctly considered, it may be used most effectively to enhance a building.

Some combinations of hues are less successful than others - reds and yellows, for example, or greens and yellows as in the Australian national sporting colours.

Responding to the body
A common mistake is to choose a hue without due respect for the body of the building and/or its context.

In South Australia we have been fortunate to have quality stone as building material, but one can observe paint colours which are quite at odds with the hue of that stone - a relatively bright red, for example, against the golden stone.

Poor colour choices can be apparent in some of the original colour schemes. Despite the skills acquired by most early painters, many extenuating circumstances tested those skills.

The fact that South Australian stone presented a very different building body from those of other States would, in itself, have required adjustment to familiar colour schemes.

Depending on the cultural significance of a building, if it has been ascertained that a colour scheme was the original or significant one, generally it would be suggested that in order to follow conservation principles properly, the colour scheme (even one considered poor in some respects) be the one adopted.

Fortunately, many good examples are to be seen where the relationship between the colour of the body of the building and the paint colours is successful.

A restrained and appropriate palette of colours was often employed on South Australian Victorian villas with stone façades.

For instance, with the warm colour of the stone and terracotta brick quoins, white or cream has been popular for woodwork, together with a relatively dark cool grey as contrast. (The introduction of a small amount of orange and dark green in the form of a potted cumquat tree completes a very familiar colour scheme.)

Complementary colours

Hue relationships and, in particular, complementary arrangements of colour are frequently cited in discussions on colour harmony.

Complementary pairs are opposite colours on the colour wheel; for example, Red/Green or Blue/Orange. They make successful combinations as each colour in the pair is enhanced by the other.

In terms of colour, we have a need for balance.

When three primaries are present in the field of vision, the eye will be in a state of equilibrium or rest. Equilibrium isn't just a descriptive term. I's a physiological condition that the eye requires at all times.?

The example above illustrates a subtle complementary colour scheme. The stone is a muted cream colour in the range where the complement could be expected to be blue, blue/violet in hue. It is enough that the grey used as contrast is a 'cool' grey - that is, inclined to blue, rather than a warm grey, for the eye to be satisfied.

All three primaries are present in each cambination of complementaries; far example, R and G (which is compased of $B+Y) ; B$ and $O(R+Y)$ etc.

Ta be a successful combinatian the calours do not have to be obvious and, althaugh thearetically there are ideal praportians far each camplementary pair, the contrasting amount of a porticular colaur may be minimal.

When applying these principles to architectural colour, it could be anticipated, for example, that in a traditional scheme that has red as the predaminant hue, relatively smoll areas of o green (such os Brunswick Green) wauld be sufficient ta be successful.

As well as the complementary colours, ather arrangements of hues are considered forms of colour harmany (see illustratian following page).

Monochromatic harmany refers ta the use of one hue. Values and levels af intensity (or saturation) of that hue may vary within the composition.

Analogous harmony is that achieved from the use of calours which are next to each other on the colour wheel.

Analogous colours are limited in range. Usually all the calours in the group contain one hue as the dominant hue. The range of calours can contain two but never three primaries. Again anology is not confined to pure colours and volues and levels of intensity moy vary.

Warm and caol colours

Warm colours predaminote in the colour spectrum. Of the three primaries, R Y B, two are regarded as warm colours.

The colaurs of moterials used on older buildings, for exomple stone and brick, were usually warm, and the colours more common among the first paints were largely earth colours, which were alsa warm. Perhaps because of these foctors, some calour schemes in South Australia lock balance between warm and cool hues. Examples abound of warm schemes that ore without relief, such as warm stone with
a red roof and rich cream and burgundy paintwork. When these buildings are sited where there is very little help in the woy of greenery, or other contrast, the overall impressian is ane of heat ond discamfort.

Historical evidence of an original colour scheme of this noture may justify such a scheme being reproduced, especially where the building is of cultural significance. In this case, attention ta landscaping or other measures could aid in balancing the overall impression.

In instonces where evidence of on originol scheme is lost, and it is appropriate to apply colour schemes that were typical far a given era, it should be noted that many suggested colour schemes have originated from the Eastern States. Colour combinations which are successful on a building which hos a different body (for example, painted timber rather than stone), or which is differently situated (for example, in a more verdant setting), may not work as well in Sauth Australia.
'Brunswick Green', as well os now being used indiscriminately on many reproduction buildings, accurs in many recommended schemes for older buildings. ${ }^{8}$

Said to have originally been developed os a colaur 'to hide the coal based grime of industrial cities of 19th century Britain', Brunswick Green is arguably out of place with the grey-greens of our landscope and particulorly unsuitable far hiding Australian dust." It is, nevertheless, an impartant component of many ariginal colour schemes, and often successfully offers a cool element in otherwise predominantly worm schemes.

Cool colour schemes, which ore not tempered by at least a smoll contrast of o warmer colour, can be similarly unsotisfying.

In the same way thot lighter colours appeor to 'advance' or come forward relotive to darker ones, warm colours advance relotive to cool ones land saturoted or intense colours advonce relative to subdued ones). ${ }^{\text {c }}$

Forms of Harmony 'illustration Source: The Practical Painter
and Decorator Virtue London 1948 Plate 111

In deciding whether or not to draw attention to a particular part of a building by making it appear to come forward or stand out, this should be taken into account.

The orientation of a building can have a bearing on the selection of warm and cool paint colours for interiors. In essence, warm colours are best employed on the cool side of the building, whereas the warmer side can benefit from cooler colours.

The fact that advice taken out of context may be inappropriate for South Australian conditions is well illustrated in the following arficle, dated 1 July 1925, where room colours are discussed:

The exposure of the different rooms should be taken into consideration. For instance, in a north room, where the daylight is touched with the coldness of the north, decoration should be in warm, sunshiny colors;
while in a south room, the heat and brightness of the sun should be tempered by the use of cool colors in the decoration."

The article is flanked on the page by advertisements for Adelaide paint agents, and yet the advice obviously comes from the Northern Hemisphere! See the following undated illustration which has been adapted for Australian conditions.

HOW TO USE THE COLOR WHEEL

In order to make use of the color wheel, make a rough pencil sketch of your house and lay it within the circle showing the colors of the spectrum, North end of the house facing " N " on color wheel. This will serve as an unfailing guide as to the type of color to be used. Any colors adjacent to the room or variations thereoj may be used with safety. The full strength hues indicated in the outer circle should be used on limited areas only for color contrasts with the pastels - inner circle - used for large expanses.

The Advertiser Adelaide, Colorgravure Publications

Value

Colours can be light or dark. The relative lightness or darkness of a colour sample is known as its 'value'. Tone is a term associated with this aspect of colour, but as it is also used to describe colour in other ways (for example, as in 'tone down' a colour, meaning to reduce the intensity) it is not considered as accurate as value.

Colours may differ in value. Similarly, a light green and a light yellow might be different colours but still share the same value.
(Squinting helps in assessing values of colours)

Value is the most significant element in assessing colour.

It is the first thing that is noticed - the most
'readable' (as with this heavier type). We react to the amount of light reflected in a very primitive manner, and quickly see whether a composition, in this case a building within its context, is generally light, mid-toned or dark.

Dark and light elements within the general scheme are readily discernible, and sense is made of the form from the value contrasts, such as those produced by shadows.

Painting a feature of a building in a light colour will make it appear to 'advance' or come forward, whereas a recessive element may be reinforced with a darker colour - a front door being an example, especially if it is in a protected or recessed position. There can be a sense of being led, or invited, in.

Strong value contrasts are dramatic, exciting, and can be used to exaggerate parts of the building. Conversely, by minimising tonal differences less desirable features such as downpipes can, to some extent, be disguised.

Darning employs the same principle. Selecting a sewing thread that has the same value as the item to be mended is important. On a mid-blue garment with the choice between a pale blue and a mid-grey thread, the latter would give a better result even though the hue differs.

A façade having a number of elements that contrast strongly in value (tone) will not have a restful appearance and is likely to look agitated. Consequently, attention may be drawn away from a quieter but desirable component, such as stone.

On the other hand, where values are deliberately kept close - that is, with little contrast - the result may be bland and lacking in definition.

The nineteenth-century art and social critic, John Ruskin, suggests that 'in all cases it is a safe rule to simplify colour where the form is rich, and vice versa'. ${ }^{12}$

One method of simplifying colour is to restrict value contrast.

Note Middle value grey is constant in both examples - the oppearonce of the grey doors is affected by background colour

Similarly, middle values are more harmonious than extremes. For instance, in wanting to define a complex series of doors within the broad plane of a wall, the choice of colour for the doors would depend on the value of the background against which the doors are to be seen. If the wall were either light or dark, then a middle value would provide definition for the doors withour being extreme in contrast.

Another tonal consideration is that of appropriate 'weight' for the form and nature of the component being painted, as well as its relative position. If it is desirable that a form appears balanced or grounded, for example, the value of the colour of the form relative to that of surrounding colours should be taken into account.

Where old black and white photographs exist, they may be studied to establish dark and light
components. Together with information obtained from paint scrapes, these photographs may allow a more complete or accurate picture of the earlier schemes.
(see pp 25-6)

Where photographs are not found for a particular building, those of similar buildings may reveal patterns in the opproach to colour at the time. It is not possible to confirm the hues or intensities in this manner. A precise knowledge of the earlier colour scheme is therefore not possible by this method alone, and some interpretation may be necessary.

Intensity

Intensity or saturation of colour is probably the least understood aspect of colour. It is offen contused with the lightness of colour (which is its value).

The most intense colours are those which are saturated or most pure, and the intensity of a colour may be reduced by mixing either with black, white or grey, or by mixing with its complementary colour.

Saturated colour has a tendency to exhaust the viewer after a time. Muted colours are harmonious in the sense that they are restful on the eye.

Early paint colours were relatively quiet or subdued because they were usually derived from a limited range of earth pigments.

Attitudes to colour

Holizschue writes that it was common for colours to be associated with values like chastity, honesty and social acceptability well into the twentieth century, and quotes Goethe as saying 'People of refinement have a disinclination to colours'.

Although bright colours have been described as 'vulgar', there are obviously situations where the use of bright colour is appropriate.

In attempts to reproduce earlier schemes, however, the use of colours which are more intense than the originals is often unconvincing. Slight shifts in intensity can make a considerable difference to the overall effect, and care should be exercised

McGowans Butcher Shop, Unley (c1900)
Source: Mortlock Library SA (B 16508)

Residence Julius Sawllick
Muller Street, Norwood (c1880)
Source: Mortiock Library (B 17450)

Esplonade, Grange

While rich calaur was used lavishly an some af aur alder buildings at times, bright calaurs, of the intensity naw passible with new technalagy, wauld have been very much aut of place.

In the same manner that schemes with insufficient tonal (value) variatian may appear bland, schemes with little intensity may appear dull. In cantrast, thase with too much intensity may appear garish.

Paint scrapes taken fram pratected pasitians an the building will help in establishing the intensity of earlier calaurs. Accumulated grime mutes all calaurs, and air pollutian accelerates this destructive process. Samples taken fram weathered areas will be likely ta be cansiderably reduced in intensity, and sa be misleading.

Historical appraaches to intensity

As with ather aspects of the painters' art, intensity has lang been given great cansideration, and is the subject of the fallawing example. ${ }^{14}$

In an article praposing a scheme far the decaratian af an entrance hall ('Building Warld', Saturday, 15 January 1910) the authar writes af modifying a brilliant blue by the use of a neutralising pigment, such as black, ta suit the lighting and ta prevent garishness. The term 'neutralising' is clarified with interesting references ta similar French and Egyptian practices:

Neutralisation or saddening forms the keynote of all colour schemes, and implies colour going tawards shadaw.'s It produces aesthetic shades, which harmonise with each other because they are subdued ar saddened, and have one dominant tone. Braken or tertiary colours all approach black ar grey; they may be called saddened colors or shadow colours. In the finest specimens of ancient colouring, neutralisation was always obtained. If a chromatic circle is examined, it will be found that the complementary pairs in each, if mixed together, neutralise each other. This principle forms the light and shadow in the calauring of nature, and it is the dominant factar in high art. The shadow of a colour approoches black, that is, it is partially neutralised. The ancients, in using pure pigments, obtained neutralisation by propartioning the ground covered by the several calaurs, and by the use of compensatory white, gald and black, which check all strong colauring.

For outside work, advertisements, fascias, etc. much might be learnt fram the brilliant colouring of the ancients. The theary of neutralisation is thoroughly understood by the French, who are famous for beautiful refinement of colour. The three primaries, mixed together, enter into nearly every tone in their decarations. The colour, broken with white as well as with the complementary, is thus refined in two ways, that is, towards light and towards shadaw.

In French schemes af colour, too, there is always a daminant tone; the work may be either warm ar cald. In Egyptian wark, strong colour is compensated for by actual shadow; in French work, it is subdued by mixing the fints together. The pigments used by the ancients were never direct central colours, such as are faund in rays of light; thus the reds, browns, and yellows used by the Assyrians and Egyptians were inclined to be of a neutral tone. ${ }^{16}$

Terminology

There are many terms used ta describe the variaus aspects af calaur; far example, as already nated, 'saturatian' and 'chrama' are alternative terms far 'intensity'. As well as this, there is the camman prablem af misuse of terms in describing calaur. Same peaple refer ta 'shade' when they mean hue and ta 'weight' when they mean value. 'Tint' is a term alsa misused. A tint is a hue with white added, while a shade is a hue with black added.

Calaurs are mare frequently used in a diluted farm, rather than at full saturation ar intensity. Adding black ar white ta a calaur is a simple way of changing the intensity of that calaur - that is, diluting the hue.

When white is added, light reflectance is added ta the hue and the result is knawn as a tint. Dilutian of a pure hue with black, an the ather hand, gives a shade. 'Black absarbs all wavelengths af light so shades are reduced hue experiences. Black mutes the hue, dulling as well as darkening it. ${ }^{17}$

The term 'shade' is aften misused ta mean hue as in 'that shade af blue is mare green than this ane'.

This category of colours may include both achromatic colours and tertiary colours, and covers those colours commonly referred to as 'greys and browns'.

Achromatic colours are those which have no discernable hue True greys, for example, are a mixture of black and white.

Tertiary colours are 'third rank' colours that are mixtures of the secondary colours, such as orange and purple, orange and green, or green and purple

Terfiary colours are chromatic neutrals being neither an identifiable hue nor a mixture of black and white. Hollzschue states:

Brown is a word often used to describe many of the colours in this 'not black, gray, or identifiable-color' family. Brown is not a hue. We say 'brown' instead of 'tertiary color' because it's common usage and equally descriptive. Colors aren't more or less brown, but browns may be more or less red, green, orange, and so forth.

When warm greys and cool greys are placed next to each other, complementary contrast makes differences between them instantly visible. See example below:

Simultaneous contrast

Simultaneous contrast is a factor that must be taken into account in the selection of neutral colours, especially whites, which will be situated near a hue. It is an involuntary response to hue stimulation.

The human eye demands the presence of the complement to any existing colour and if it is not present generates it spontaneously; for example, a grey that is adjacent to an orange may appear to be a bluish grey as a result of this phenomenon.

Simultaneous contrast is a visual complementary-contrast phenomenon.

This results from the fact that the human eye demands the presence of the complementary to any existing color, and if this is not present automatically produces it for itself. The phenomenon is clearly to be seen in the afterimage. If one looks fixedly for about 20 seconds af the black spot in the centre of a square edged with yellow and then looks quickly away to a white surface, the afterimage can be seen as a red square with a violet edge - the visually produced (not real) complementary colors to green and to yellow.

Colours on a building will alwoys be affected by the adjacent colours; for example, a red will appear more red in the presence of green

The following quotation of 1948 illustrates the importance of context for colours.

So great has been the help of paint manufocturers that just as a child always carried may never learn to walk. so the painter has largely lost the art of colour-mixing. Colour schemes are arranged and decided by numbers, and madam is shown colour cards instead of colour samples painted in position.

Follows disappointment (sic), for colour in its niceties is decided by position, by the company it keeps, by quality, intensity, and numerous other seemingly trivial but vital points. (Emphasis added)

Reference notes:

1. Linda Holtzschue, Understanding Color, Van Nostrand Reinold, New York, 1995, p. 10.
2. (The viewer) An example is that of a seaman who regarded light oqua as a warm colour because his association with that colaur was shallow ond therefore relatively warm seowoter.
3. Holtzschue, op. cit., p. 52.
4. Michael freemon, The 35 MM Handboak, New Burlington Books, London, 1990, p. 63
5. 'Neutralising' of colaurs refers to a reduction in the intensity (or soturation, ar chroma) of a colour. See p. 24.
6. 'Achromatic' means without colour; that is, the sample has no discernable hue.
7. Holtzschue, op. cit., p. 59.
8. See lan Evans et al., Colour Schemes for Old Australian Hauses, Flannel Flower Press, Sydney, 1986.
9. Juliet Albany, 'Environmental Colour' Spectrum 1995, p. 5
10. Patricia Lambert et ol., Color and Fiber, Schiffer, USA, 1986, p. 208. (Warm colours 'advancing') When white light is refracted by a prism, red wavelengths are bent the least, and blue and blue-violet wavelengths are bent the most. When light is refracted by the lens of the eye, the same thing occurs: red wavelengths are refracted only slightly by the eye lens, so in order for the lens to bring the red wavelengths into sharp focus on the retina, it must become rounder or mare convex (just as it would on a close abject of any color). Because the eye must react to red as it would to a closer object, we perceive it as closer than it really is - thus the term 'advancing color'.
11. The Builder, incorporating The Town Planning and Local Government Journal, 1925 p. 16.
12. John Ruskin, The Seven Lamps Of Architecture, J.M. Dent, London, 1932, p. 141.
13. Holtzschue, op. cit., p. 93.
14. (Intensity) Further old exomples of consideration of 'intensity' of colour in Appendices.
15. Reducing intensity - 'shadow'. See p. 24 for reducing intensity by mixing with block, white or the complementary colour.
16. Building World, Saturday, 15 Jan. 1910.
17. Holtzschue, op. cit., p. 68.
18. ibid., p. 60.
19. Harald Mante, Color Design in Photography, Focal Press, London, 1972, p. 52.
20. Alfred Geeson, The Practical Painter and Decorator, vol. 2, Virtue, Londan, 1948, p. 123.

4 COLOUR SCHEME SELECTION

Colour scheme selection is a criticol part of the tosk of repainting on older building in South Australia. It is best addressed having some appreciation of the history of building materials and associated paint colours in this State, os well as some understanding of the broad principles of colour theary. (Refer relevant sections.)

A colour scheme is very opparent and even when other aspects of repainting have been well executed, a scheme which is not well considered can quickly detract from the overall end result. Time taken to assess on individual building and to select an appropriote approach helps to ensure a successful solution.

The significance of the building must first hove been established. This greatly influences the approach to repainting. (See pp 2-3.)

Building form needs to be evaluoted. It may be considered desirable, for example, to emphasise horizontal form with certain colour, or to demonstrate restroint with colour where the form is complex.

The context of the building is an important consideration. The colour of paving, kerbsides and fencing, for example, should be observed. Any adjacent buildings - their form, materials and colour - will impact on the broad composition of which the building is a part.

Vegetation should be regarded in a similar manner and allowonces made for particular circumstances, such as seasonal colour.

Also to be taken into account are possible financial limitations; for instance, the colour of a major element such as the roat may need to remain unchanged. This would necessitate thot colour being occommodated into the scheme, even if temporarily.

The approach

Suitable approaches to repainting an older building can be categorised as:

- ottempting on accurate reproductian of either the original colours, or colours of a significant stoge in the history of the building.
- a canjectural appraach, being an approximatian of colours used on a particular style of building at a certain time; that is, although not necessorily the actual colours used on the building, they ore authentic for the style and time.
- a cansidered cantemparary solution using the wider ronge of colours in a considered way, taking account of the body of the building, its style, the context, etc. This 'perpetuol' opproach is well founded in colour theary.
- o contemporory solution which needs to address certain limitations such as commercial restraints for example, hoving to accommodate corporate colours into the colour scheme.

Commercially available colour cards are designed to help moke on informed choice. The cords, together with paint scrapes, should help in identifying o colour scheme that may be a reasonable interpretation of the originol scheme, or, similorly, assist where other solutions are intended.

It is useful to be awore that colours selected from small sample 'chips' will appear to be both lighter and to have more intensity when applied to large oreas.

Composition

Consider the composition in basic terms of large ground areas (that is walls, roofs) as against fine lineal elements (for example, gutters), mid-sized blocks (doors) and spots of colour. This will suggest which colours will be more appropriate in the various parts of the composition; for example, a relatively bright colour will be quite imposing in a larger area and usually more effective when kept for smaller 'accent' positions.

Where the body of the building is imparting colour into a scheme (as is the case with stone), the introduction of a definite colour into a second large area, such as the roof, has significant impact. The same colour, when introduced on a lineal element such as gutters, would have less overall effect.

Small 'thumbnail' sketches in coloured pencil help in the decision making at this stage.

Careful observation of existing successful colour schemes is also of assistance, although each case is different and so allowances need to be made. A highly successful example may be reliant on a factor such as an old weathered wall or the backdrop of a magnificent tree. When these particular factors are not in play, even though the actual paint colours have been accurately transposed, the end result may be disappointing.

A design checklist

The following design checklist is intended to aid in finalising all schemes except those where colours and their combinations are known and fixed.

- Is there sufficient variety in hue or is the scheme overwhelmingly warm/cool?
- Are there too many colours involved? Could some colours be replaced by neutral ones?
- Is there sufficient variety in the sizes of colour - that is, are the areas of different colours too similar in size and, so, awkward/clumsy in that respect?
- Is there enough tonal contrast (contrast in value) or does the building look too bland and lacking in definition?
- On the other hand, does there need to be more restraint with the tonal contrast because the appearance of the building is 'bitty' or fractured?
- Is there enough energy - that is, intensity of colouroverall, or is it all looking too subdued and flat?
- Conversely, is there too much energy in the colour giving the building a riotous appearance?

Whether adopting a traditional or a contemporary approach, taking the time to analyse and address the building in question thoroughly prior to developing a colour scheme is a requisite first step.

Accurate reproduction

An original colour scheme is generally considered the most appropriate where the building is of heritage value.' However, where significant additions and alterations have taken place over time, these changes may have assumed heritage value and also need to be considered. In this case it may be more correct to adopt a scheme which is oppropriote to the interpretation period.

Investigative work

Investigative work is crucial in that it provides a comprehension of the original scheme. Expense is involved in employing professionals, but this may be necessary in the case of major buildings or when there is particularly fine detail/design.

Generally, however, it is possible to do the crucial investigative work oneself, providing care is taken to prevent irreversible damage to what are often delicate finishes.

Portions of interesting work, such os stencilling, dodos or other types of decoration, may require uncovering to indicate design and colour. Even when covered by layers of subsequent paint, they are often discernible by the raised pattern showing under a strong light projected at an angle onto the wall.

Decisions about restoring these finishes will be based on the cultural significance of the building and the relevance of the finishes; on the state of repair; and on the appropriateness for current usage.

All evidence should be thoroughly documented, and, where possible, original finishes should be preserved, at least in part, and incorparated into new schemes.

Documentary evidence

Invaluable infarmatian to identify original colour schemes or support the findings of on-site investigative work can be provided by documentary evidence such as:

- old photographs, which, as well as indicating tonal volues, can often be doted from the style of people's clothing or other clues;
- written descriptions such as letters or early histories;
- original drawings and building specification; or
- talking to previous occupants, neighbours, or others in close proximity.

Publications covering period paint colours, techniques and decorative styles may also provide relevant information.

Point scropes

Evidence comes from the careful removal and analysis of paint. Any of the following procedures may be adopted:

- a diagonal cut with a sharp knife ar surgical scalpel made across the layers of point. The cut should reach the substrate and expose as much as possible of the individual layers. Sanding aids in the examination;
- small chips or flakes of paint malter can be removed from the surface and the crass sectians examined;
- progressive removal in situ af paint layers by chemical solvents or mechanical means to expose a portion of each colour layer;
- removal of scored paint samples with clear sticky tape.

Occasionally \circ variety of colours and highlights were used on the same wall or building element and therefore several different areas should be sampled. Insight into which areas should be sampled may be gained from scrutiny of similar schemes of the same complexity.

It is preferable to carry out investigative work on a well-protected area that has not been subjected to a high degree of exposure to the elements and, in particular, to ultraviolet light. Such areas should also not have been previously subjected to work entailing the removal of original finishes.

Once successive layers of paint have been uncovered, a smear of oil or glycerine applied to the paint scrape assists in bringing aut the colour.

It should be kept in mind that, particularly on the exteriors or in wall areas more expased to direct sunlight, colours may have significantly faded or altered since the paint was opplied.

Brunswick Green, for example, changes from its original deep green into a reduced blue-green colour.

Accumulated grime mutes even the most durable colours, and air pollution is an increasing problem. Oxidation is another problem and remains so, even with modern paints. Colours are affected at greatly varying rates and so the original combination or balance af colours can be significantly changed. ${ }^{2}$
'Fugitive' colours, or colours which change in appearonce, can also pose problems. Some pigments migrate up and down within the paint film and in so doing alter the appearance of the paint colour. Certain red pigments are especially wayward in this respect; for example, when red pigment works to the surface in a cream-beige-coloured paint, the colour changes, appearing more red and at times resembling 'undercoat pink'.

Recording

Colour scrapes may subsequently be visually matched against:

- paint manufacturers' colour cards. These are readily available and very convenient on-site; or
- the Australian Standard AS 2700-1996 chart or British standard BS-381C;
or
- the Munsell or other colour systems such as the NCS. ${ }^{3}$

A magnitying glass or microscope can help achieve a high degree of accuracy.

It should be noted that most paint manufacturers are prepared to match any colour, if given a sample of sufficient size. Recently, spectrophotometers, which are machines capable of accurately matching colour samples, have been introduced into some manufacturers outlets.

At times, the original finishing coat may be difficult to distinguish from the primer or undercoat as primers used in the Victorian era were frequently white or cream. To ease the covering of imperfections and sanding, primers were filled with talc or calcium carbonate. Red lead-pigmented primers were sometimes applied to rendered masonry surfaces.

Undercoats were not very strong, being loosely bound, and if subjected to the sticky tape method of investigotion (where a 2 mm square piece of point is cut through and removed by pressing firmly and pulling off with the tape), they will sheer because af their low cahesive strength. The texture of these undercoats is noticeably different from the finishing coat.

There are now sophisticated analyses that allaw the ariginal colours af materials, such as textiles and paint/paintings, to be established with reasonable accuracy. Unfartunately these are expensive and usually not available on site. Guesswork may therefore be required to identity the paint colour before fading occurred. It moy then be matched with an existing available calaur.

Paint scrapes are a good starting point. But it is important to be mindful that often paint has been thoroughly stripped off, particularly in the case of outside timbers. In such cases documentary evidence may help to fill the gaps.

The study of publications on period paint colours, as well as manufacturers' guides, will give a broad understanding of the range of colours commonly used in a particular period. ${ }^{4}$ It should be possible to anticipate, for example, which colour was likely to be found in a certain position. Differences between States and styles of building should of course always be taken into account. Each building will be different and the colours themselves will vary subtly. It would be unlikely that Light Stone, for instance, would have been precisely the same colour in each case.

Once the nature of the colours painted on various areas is established it helps to develop a small, coloured sketch indicating those colours in position. This is relatively simple if using copies of photographs, and, while this method cannot portray colour accurately, it should be sufficient to visualise the overall composition.

The colours that have been identified in layers at the various sample positions should also be recorded for future reference.

A conjectural scheme (or an 'approximation')

For various reasons, adhering to the original colour scheme may not be a preferred or possible option.

It is possible, for example, that insufficient evidence exists for analysis; or, perhaps, in the interior original colours may be incongruous with furnishings or adapted uses. Under such circumstances, it is reasonable to approximate a scheme from colours commonly used on similar buildings of that particular time.

It is important to be mindful of the inherent danger of direct transfer of a colour scheme from one building to another. Even though buildings are possibly similar,
there will be factors such as variation in materials, scale or detail and especially location - the setting or context - that may require to be considered.

As with the case of accurate reproduction, examining, documenting, and preserving, where possible, any evidence of previous colour schemes is necessary.

As well as being important for future reference, this historical evidence can aid decisions on colour and its application. A tonal (value) pattern, for instance, may be identified and be adopted, even though the colours chosen differ in other ways. In this manner, at least one aspect of the earlier scheme has been retained.

After studying examples of schemes used on similar buildings, consideration ought to be given to the individual characteristics of the building in question and allowances made.
(See Notes on Colour and the Composition Design Checklist.) In the case of many older South Australian stone buildings, for example, the stone colour will be better suited to some 'period' paint colours than others. Sensitivity is required in the selection.

A light-coloured pinkish stone may require a paint colour quite different from that on a light-coloured, but more yellow, stone. Careful study of the individual colours within the stone can establish a direction and make selection from a group of appropriate colours easier.

Appropriate colours

Appropriate colours ore those possible from the pigments which were more readily availoble at the time. The orange/yellow ochres and reddish-brown iron oxides are stable colours which combine with each other and make a variety of colours possible.

With black and white (Lampblack and White Lead) being other such exomples, it is understandable how the familior neutral colours - like off-whites, creams and greys - evolved in this State.

Neutral colours, which commonly occur in local building materials - for example in slate, stone, sands and weathered timber - and which were used earlier in this State, have continued to be appropriate for local conditions.

With bluestone buildings, quoins are an important consideration. If the quoins are brick, there is less scope for introducing colour to relieve the heaviness of the dorker stone. In this case, nevertheless, the terracotta and dark grey pairing has a richness possible only with that combination of moterials and should be respected. The choice of colour will vory accordingly; for example, remaining elements such as window frames and other woodwork may be painted a different colour from that which would be used if pale, rendered quoins were in play.

A strong red and cream original scheme, which may be now considered inoppropriate, could be modified, for example, by reducing the quontities of red. Retaining the original red colour as an accent while introducing o more neutral colour to give overall balance, could be a solution.

Accurotely reproducing any original paint colour, such as a particular green for example, and carefully using thot colour - even in o combination different from the originol one - will give a more satisfactory result than resorting to o more standard green/cream combination.

It is possible to paint an historic house in appropriate colours and still express personal taste. The historical colours should emulate other traditional building moterial colours and the colours chosen should relate to colours in the post, but otherwise there is scope for a good deal of flexibility. ${ }^{\circ}$

A cansidered contemparary scheme-the 'perpetual' or timeless alternative

The approoch taken in developing o considered alternative scheme again involves a thorough examination of the building. The same course of identifying cultural significance needs to be taken.

The building may be such that it is appropriate to adopt a colour scheme other thon an original one. Nevertheless historical evidence encountered in the process of repainting should be documented ond preserved.

The nature of the building, its predominant building materiol, form and context oll need to be taken into account in order to arrive at a suitable solution.

Responding to the body of a building

A good starting point in developing such a scheme is to respond to the body of the building, analysing the colour of the existing brick or stone or other significont materials which will be influential in the final result.

Where the material being considered is made up of a number of colours, os in the case of stone, some experimentation may be necessary to arrive at a representative colour.

Remain alert to the impact of sundry elements such os air vents, doorknockers, chimneys etc., as well as any imposing factors in the immediate environment.

Where the form is complex, having elaborate detoils, or many different-shoped openings in a façade for example, colour should be simplified. The number of colours could be reduced and restraint shown in any 'picking out' of feotures.

There should always be sufficient variation to allow definition of form and to avoid blandness, but the use of fewer colours is usually best in any instance. Avoid busy contrasts. The least successful colour schemes usually display a lack of restraint. This can be in the area of hue, where too many are used; in tone, where strong value contrasts detract from the appearance; in intensity, where the impression is vivid; or, at worst, in more than one of these categories.

Buildings treated in an exaggerated manner have been likened to being 'permanently in party dress'.

Sensitivity to the nature of the stone is important. Bluestone is not enhanced by 'acid green' quoins, and even a more usual quoin colour, such as a yellow ochre, will dominate if too strong in intensity.

Current fashion

Where it is desired to use colours that are currently fashionable, these are best introduced in limited areas. Relatively small areas of colour can be effective and impose a modern 'flavour' without detracting from the appearance of the older building Fine areas around windows or small parts of trim on woodwork are good examples.

Sketches to assess proposed compositions of colour in relation to the building form and context again provide a useful check.

Use of neutral colours

Neutrals add complexity to a scheme without dominating and may be selected to be harmonious with the building material,

Different neutrals are created by the mixing of different colours. It is therefore important to select neutrals based on the colours that are pertinent to a particular building. These may be either derived from the building materials themselves, or from a colour being employed that is harmonious with them.

A neutral colour, such as a grey, that is mixed from a colour being used (for example red) and the complement of that colour (green) will be much more successful than a neutral which has been introduced arbitrarily; that is, one derived from a different complementary pair of colours - such as blue and orange in this case. Also, a neutral mixed this way will be more natural and satisfying in appearance than a grey mixed from black and white.

Where additianal calaurs on \circ building are necessary, far example where extra building elements need defining ar where the use of ane calaur aver many elements wauld appear clumsy, a neutral calaur allaws camplexity withaut a riat af different hues.

Decoration

With greater awareness af earlier decarative styles there hos, for the last twenty years, been mare interest in applying such decaration ta buildings. There has been a great deal af enthusiasm and, as a result, there are excellent examples af wark that is well executed. Sametimes, hawever, the approach has been averzealaus. Far instance, elabarately 'picked-aut' paintwark is naw faund in inapprapriate places, the wark abviausly having been carried aut withaut adequate investigatian of either the underlying paintwark ar the histary of the building.

This is in cantrast ta anather less-than-ideal approach that has been ta disregard any detail by painting buildings entirely in white.

Fartunately, point is transitory and the application af paint calaurs has always been influenced by fashian. These facts allaw buildings a vitolity thot would not be passible if there were ta be rigid adherence ta 'rules'. Terence Lane and Jessie Serle in their baak 'Australians at Mame' quate fram an ald publicotian when making a paint about apprapriateness in the matter of decorotion:

How much better it wauld be if, instead af things which praperly belang anly ta grand receptian rooms and stately galleries, we wauld contrive a style af decaratian which shauld be in keeping with the houses in which we live and with aur manner of life. ${ }^{\text {. }}$

Reference notes:

1. Adopting an original colour scheme internally may be more difficult in terms of accommodating contemporary furnishings and being appropriate for modern lifestyles.
2. Linda Holtzschue, Understanding Color, Von Nostrand Reinhold, New York, 1995, p. 105.
3. Colour systems. Refer p. 68
4. Publications on period point colours. see Further Reading.
5. Gordon Bock, Old. House Journol U.S.A. 'Choosing Exterior Paint', 1996, p. 54.
6. ibid., p. 53.
7. ibid., p. 54.
8. W. Fulton, Taste in House Decoration, Australian Decorator and Painter, 1906, p. 6

Tils marked impoveturat in traide shown by the Boasi of Trate Returum will doubtless hav in apprectable effect ufots the paiming atsl Jecorating trakes when the conimp politimal truggle is owy, and it io forty cettam that the
maildine trate gencraily will geatly fugrove

 poperty outhuk rixhtls tevert rywnting ac a fiensosig protetiout of thois proginaty on hem

 the woti as timg as postilio.
Naturatly, the painting trali if nevt ovie it which fratik changes are sudidenly made, yet areat progreat os tecosiled in the masufature

 tieal of atteatfos fas boen puia to this subkect ly the pitas and senitirianc lately, and proniment metr as Sir Hetty Famare, ar of thon of a poisonous claracter. We thav got beyoht the peint of supposing, as some
aid-fahbouct patiters still Ato, that ins paint

 matter of fact, vily t tex mannfacturers of paints and molours fin this country who corrode theit What white-feal; all the others have to purchase
their lead from the colrentess, it lotas renowed by thent in the form of wlite portder which they grind with wit. The Thosit of Trade restrictions, homever, even fis this simple operathun, are quite sercre, and in some caus it sjecial
plant is insisted uper. In these circumatamen,

 venfence of their constomers thicy buy it renty sfound and put up in sebled loge
Ferhays no series of pigments thas Ineat mproved to a greates extent thum the peralled
" imitation vermilions," although in this conniection the Nord "imitation" is pecullativ unfortumate, because the worl fimples sompe thime infering whereas in fact the row rets afe much smperiur. What is meant fs at hright red
 milfon. Piflorts have been thede for vears past
to produce sirth a fed which shoutd be as pet. ts produce sikh a fed which shoula be as pets
 was met with, and some very hematiful reds wer produced which were undoubtedly, at least cqual, if not superios, to vermilion from the cost was very considerably less. Unfortumatelv however, these colours possessed the property of "Blecding," that is, if any colour such os white was painted over them, after a period the fet would quekily cat its way through thic coat atat show it Whot-like drops on the surface This meant in effect that the cotour could hardl! be changed when once a wall was painted with red. Now this defect has been overcolise, ant 1 moderatic price ant wirantel net at a very the same titne possessing the quality of boine to all intents and purposes permarity of being In some quarters, white permatrent is
liave hal its day; but, as a matter of fact, it is more pophar thate ever, although flat etamels are used to a greater exteut than before, particularly in eonfunction with the glassy. Panelied work, finished with glassy cuamels on the stikes and rails and flat enamel on the sunken durable one. The ploss of one surface is a very durable oue. versa. Those who imagine that white chatuct which is unquestionably the miost popular of paits, is diotird to beconic atombto it is few
veary' time becorse of the fuevituble chatse of
fashion in decoration, shonkl remetnoer that : some fietic faty gets tifol of the whitelaes of fer dtawing-foom or boudair, she has naly to fintmict fles fainter to give the worti a glare of senne Ifght of brilliant grech, sellow, Ted, blac, orr other colonr to probluce an exceotingly pretty and delicate grech, lieht tratsphareit anther, pink of Hglit blue Sulit worl: catr be dane very inespetsively, and the apparatio of the ronut ciangrd os ircqueatiy ws may bo desiren Wince stal retamel of white ctamel
Alt fispection of the wallpaper looks for the
 Whech ars chaignel to frgite ent variont textile govels, bent the callef point of interest to fo the prodoction of "cut-uth," deagus These are stitended to be lised for the pirnfactou of varions effects, such as patrelled work, spectal barilets and cormers, stiles and fillines being suppliod. the whole being cint ont fromil a phenc of Jupes is may le requind. In using them it in tieces sary that the decosator docs consideratily tuare full plan out lis parls to suin, dee mmst the

 frives have been knourn for sume yeats past Grey consfot of a frieze priated on, the filling keneath tunally forming pat of ftre dofish A8, however, utily threc knitlos van le printeif Ot ote pheo of paper, they jtove to be bomeWhat capensive in the coming yoar' b booh
thure are a timmer of friczes which are inteated thre are a timitar of friczes which are inteated
to be qailoped of cat ont lo the des at thit to be qaillopect of cat vot to the deseg口 at the trutom
irizze.
On Jatuary 1 the manfucturen of 1 , inctistaWaltoll are putting on the market an extremels Iaseful new material, named Metaxyt, which hafatin. It is mperaranee of the richest sumy bratiful shades mond adturabte designs, and possarss the great Advantane of being washatec

Ampite s. JENSTMGS.

Deugat the past fwelve mouthis the soicnee of construction has received a great deal of attenthot, and aroused much interest, while the devopment is certain branches has betit can Eany mew forme of ditai sil probath sete evolved, and also umdoubtedly a great advance and increased cmployment of crtain cxisting materials and methods. Steel sheleton framed buildings have become very geteral in latge Norks, and this so in giving Acts did not offer Any imfuec thent to conitruition of thit natare imbitime as they disl, ou thick walls in high structures regardless of the fact that stred walls were frequently carried directly ly steelwork at each flont levd, and consequemtly lat :un structural value, but rather added to the dead load to be carticd by the steel framing, it can be coufidently stated that in Lutulon, at all events. sted skeleton and reinforced comerete structures will become practically the general type of construction one day, owing to the Loutud County Comeli's recognition of the need of affording
greater facilitios for the carrving out of this class of work. The Domion County Comncil (Gencral Powers) Act came into operation on August $26,100 \mathrm{~g}$, and is of the uthost importance to all engaged in the design of buildings in Lonlos. It aftows of the onstruction of buildings having thin walls (that is, $13 \frac{\mathrm{in}}{} \mathrm{in}$, and 9 in . thick only), which will not only mean a great saving in briciawork, but also a saving In stecl on account of the dead loads doe to walls being dimimished. At the same time a
thorough knowfedge of the subicet will be necessary to the designer, as workitig stricses are specificd and calentations mostist tee deposited witle the dietrict surveyor, so that approsimation
will mot awalt, porthillat fin 'tir dise of stan chinns ccicatrix lly bouded asd similar problenis. While the sogulations fot rehifetvent simerese are nol. at the provetit, at all detimite, tho coumch thate secured the powez to frame stich are tio tomiter the hard and fat fulet of it id tyk if muthtition Firwtesistime un striction is timbatitedly amother important val to the

 attentory will be paid to this lirmeio no sum structions. Fommathous witl regture to b eation
 tomider the fict ats Hot ksuevilat, and this will ancat ap oxtratid tue of knillose fomblations probalik the cumprossh syrtemt of futmationg this method a bift soil mold be conpemill
 in large buldituse is savitly focomine die placel, and its duat wee xill be in dotareti

 kithts of curistsicifot and portentiots in I in foroof concrete wotk hut tho wembl ivo the feture eit umbotitaity be ome that : finc ressting ami carplle of being specdifl eroycel

 constriofoth.

heating and ventilation

Tax progicets of the lacatime and velithatios engibect int figto may oc cousidervi saliodaciory clasfly because the demand for this wotk, partualatly heatias, has leen on the intrane
for some years, anit this incraze will unfoaht
 systems, and atoo knowledge on the pirt of tha casimer and experience on the part of the pottle likolifent of heating ane wemtitione is
 sionally due to deprocion in trade
But a few swas apo bat-kater
residences wos hearly unknown, ant thete exintul a pectiar prefulice against it, whoteas niove atheat every houscloldet woud welcome) If the cost of installation was not so ligeth if is stich ats econozuical source of beat, so groatly retuces habour and dift, allows of open fiwirs
and windows in winter, and nindows in winter, atad is heathiful. There are one or two gen heaters on the matien to
fix at the hack of grate fires to theat rilat in

 to give the equctal reason for meationing tirch here, Iliey act as the - thift edise of the wrdee in making the heating of residenees ly hot thate more fecugnisey! and universil. There is at immense markel here, and the prospective bat is ready to welcome the radiator, but the bamin of the cost of the customary complete illotultation is a diflicult one to get ove The beater just mentioned is a convenemt inate way mosume an incentive, and shouht wever to a disapp int ment.
Dusi
 hot water or steam, atud eviry smech place that is erected carrics an orier fur the heating engineer. There can be titule douht that lout water always proves the most econtumbal sontcy of heat as regards farl cormumptom, pwium

 There is alos a linitit to the ailaptive of 11 ordinary fint-watet syatem, thin being formel in the enoturus putule buikfing that one lifin and haye then crevtal. For these there are Han the atmespheric: atemeleatime syatemi

Examples of colour schemes

Variation and individual expression are possible with a limited palette of colours. Sandstone building bodies, pale, rendered quoins and grey roofs are common factors in these schemes. Note how the light coloured lacework on one building 'advances' whilst the dark lacework on onother 'recedes'

Grey roofs and fencing, the crisp white of
the pointing and sundry white items counter
any inclination to dullness in these schemes of bluestone combined with ochre and
red brown hues
See this page and following page

Painting of Older Buildings

Straightforward use of matevielv and simple effective use of white

Fainting of Older Buildings

An example of a well-balanced scheme: the neutral paint colours complement the building materials and allow expression of the building detail A darker gutter successtully defines the
 edge of the grey roof and adds interest with the value contrast. Note: More contrast on the gable, either in hue or value, would compete with the essential red/yellow combination of stone body and brick quoins

Similarly, this scheme is attroctive and appropriate on an older church.

The smilar warm hues of the stane and paint
colours allow subtie definition to the gable
detail while not "breaking up" the building
form The vertical nature of the chumney wall
for example is reinforced by keeping the
tonol (value) contrasts shight

The gable detail is readily noticeable because of the introduced thue (blue), even though the value confrasts are not majo

Painting of Older Buildings

The strong tonal (value) contrast of dark green and off white resulfs in a dominant lineal appearance which can distract from other building elements.

Strang contrasts in hue and in tonal value
The 'picking out of detail is very obvious

The Botanic Hotel, North Terrace, Adelaide
The building form is complex and the very
simple colour scheme is an effective one
Detail colour is minimal.

Shop and residence. Mckinnon Parade
Unpailted stone and brick quains better
express the building form The dark grey door
prowides a successtul contrast with the cream
woogiwork and the red roof

Appropriate neutral colour on window hood provides definition of form and interest (gentle hue contrast with wall calour/ without complicating a focade that already has stone red fle and substantial detail - as in the dentiles Restricting the deep red trim to a fine element avoids adding unnecessary wormith to the scheme

The building has a red tiled roof and a warm-coloured stone body. The introduced contrast of green is applied to a limited arect and the colour is reduced in intensity The green relates to the mossy patino of the tiles and is successtully ougmented with neutral colours.

The contrast of bluestone and white
is strong Architectural detail is better
defined using some colour. The unity
of the building group is also compromised by the one white scheme

[^2]The white door relieves heaviness in a dark, warm colour scheme.

Schemes with a bias to warm generally dull. colours there is a lack of hue contrast. The scheme above hos more tonal (value) contrast

Painting of Older Buildings

Two introduced hues (the red roof with
contrasting strong green woodwork) as well
as the third yellow-cream hue of the body
of the building gives an aggressively
colourful scheme.

Excessive use of one hue. The green is also
of a relatively strong intensity and so the effect
is compounded.

A standard combination of heritage
colours witt a strong Red Green and
Crieam hue contrast. When the cream
is more yellow and intense in colour
the overall effect is amplified

Pointing of Older Buildings

Colour is confined to finer building
elements and so the overall appearance
is more controlled or 'ratined'

The colours are reduced in intensity There are relatively large areas of red and green and yet the impression is one of restraint

Grey-green as window paint colout is a cool contrasting element in an ptherwise neutral/warm schene The contrast is a quiet or gentle one Tonal contrast is provided by the burgundy fence and trim defail

[^3]

Some contemporary roof colours (for example Birch Greyl are suggestive of original iron. Quoins in this example are pale and neutral against the bluestone and the deep red is restricted to the smaller areas of gutters Definition of the window with a small amount of yellow hue prondes controlled energy or intensity, to the overall result:

A subtle neutral colour scheme here relates to the stone and works better in this situation than standard yellow/green solution.

5 A BRIEF HISTORY OF PAINT

Until the eorly twentieth century paints were mastly individually prepared. The master painter' produced paints by hand 'fram samewhat limited materials, certainly in a rather crude and unscientific manner and aften with materiols that are na langer available taday. ${ }^{2}$

Originally the pigments were sald 'dry' and mixed an site. Later they were purchosed os colaurs in ail but even so, os in the case af white lead, the breaking dawn af the ingredients inta a paint suitable far application, was carried aut by the master painter.

Early methods

Traditianal methads were time cansuming, and painters were faced with a difficult task because af the almast camplete lack af standord farmulae, calaur terminalogy and knawledge af chemistry. Nevertheless these painters were highly skilful. Seven years were spent learning the trade, and guilds exercised strict cantral aver the training of apprentices.

The painting af mast South Australian buildings follawed this practice until araund 1930.

Traditianal paints and coatings

Traditional paints and coatings can be divided inta three braad categaries:

Turpentine 'thinnable', such as glass paints and varnishes which were mastly used an wood ar metal.

Spirit 'thinnable', such as spirit varnishes (far example, Shellac) and French palish that is thinnable with methylated spirits.

Water 'thinnable', such as whiting, limewashes and pigment washes, which are frequently used far external, rendered areas ar masanry walls, and distempers (including Kalsomine) which are mastly used far interiors.

These coatings are discussed as ail paints, varnishes, water-based paints etc.

In general, ail paint was used far exteriar and interior woodwork and iranwark, distemper ar wallpaper far ceilings and walls, and varnish for the pratectian af paintwark ar stained floors.

Traditianal ail paints

Troditianal ail paints, which were turpentine thinnoble, relied an the purity af the ails and pigments used. The quality af the ingredients af paint has always been an impartant factar in obtaining a goad and durable finish. Oil paints made af linseed ail provided an elastic and hydraphabic coating well suited to timber.

Because the ail affarded goad water repellency, these paints alsa pravided a degree of corrosian pratectian ta ferraus products including cast and wraught iron.
'Far generotians serviceable paint was made simply by mixing together pure white lead, pure linseed ail, turpentine and a drier far white paint'. However, white paint produced this way and applied ta surfaces which were expased ta extreme sunlight was inclined ta chalk aff. When zinc axide was added to the paint the result was harder wearing praperties.

Traditianal primers

Traditianally red lead was cansidered the best primer an both timber and steel. Accarding ta Gehrig, ${ }^{5}$ typical farmulas wauld have been:

Priming for hardwood

White lead	20 lbs
Red lead	$6^{1 / 2} \mathrm{lbs}$
Raw linseed ail	60% \}
Woad turpentine	37% 5 lbs
Terebine	$3 \%\}$

Priming for metal

Red lead	20 lbs
Raw linseed ail	$50 \%\}$
Wood turpentine	46% \} 5lbs
Terebine	3% \}

The colour of these priming caats was a bright pink, the calaur being incidental to the amount of red lead used.

(b) Hilatioc

MAGNET" Brand Flat Oit Whire Leed Hase Pant is guatantacd to be made Traximum quatity of Gentirie Engisi White Leat necessary to produle the
 Paitit

COVEHINQ CABACTTV
? gation at Mognet liand Flat Dil Paint covera

on promel pianter hoard

- …

Quptimesturlik wall aiva
saertices
1 gailion and 1 quat decorated tins
 But cosd niay bo alected by ogt an
 treparibitry tor platur varation on

 "MAGNET" HARD GLOSS WHITE LEAD BASE PAINT

Was tha innerent durabalify of White Lead-brillant ename The giosa-grod spreading-anc hietig powern and maximy Genulne White Lead content
Avallable (with appropriate indercdating coloura atid alack and while

WSTATGTMNWS FOR USF

Thotongtily elaan woth hafore anpliting paint RHlow surthco to dry than appit patn ruly surtace to dry then apply
as many coats of Magnat Flat Ot White Lead Base Fait as required. Two coaty will generally be found to be sufticient Allow eintt houry ketween coate Apply paint with a full brusti.
Specifioations
(1) On Plases and samber perme Eathesne bat phswisultr palthed
One coat Genuine of Tinted White Two coats Magnet Flat Oil White fand Base Paint

 paintid undocan \Rightarrow
Magnet Flat Oit White Lead Easp Paint is unad for urdermating at firshing coats, fis many coatn at denired can to used

Botart aze stor weil from bottom of tivi and keep well stirned Replace lid Retarety makniz an cir tight jeat when nas in whe
the tir
Cookson Lead \& Antimony

Hex Huse venser usposk ise
Twioplaven-Nawexitit sin 274

COLOUR CAR

MAGNET

TI NTED
WHITE
LEA D
PAINTS

Courtesy: Alan Feder, Solver Paints

BORTHWICKS $4 B$ REINFORCED

is made from the best known paint bases-Lead and Zinc REINFORCED with TITANIUM OXIDE, and mixed in specially processed oils.

Paint reinforced with Titanium Oxide excels in covering capacity and colour permanency, and definitely ensures maximum protection of the surface over the longest period. Paint reinforced with Titanium Oxide does not crack or peel-perish or powder. It wears like a rock and weathers slowly-giving years of service.
"AB" Reinforced is more economical to use than most paints, because every gallon will cover more square feet.

BORTHWICKS VELVETONE FLAT OIL PAINT

A delightful matt finish that is washable and extremely durable on all interior surfaces-plaster walls and ceilings, metal ceilings and panelling. woodwork, wall boards, etc. Walls coated with Velvetone aid the correct diffusion of light and provide an ideal background for the furnishings of any room.

Velvetone is self-levelling, so that laps and brush marks do not show, and the amateur does not experience any difficulty in coating large surfaces.

Range of 16 delightful shades.

REINFORCED
There is extra strength in every brushful. Manufactured by Borthwicks Pty. Coy. Sydney-Melbourne-Brisbane.

12/37

Courtesy: Alan Feder, Solver Paints

Red lead is employed becouse it exerts o powerful drying effect on the oil ond continues to operote when the oil hos sooked into the wood. Thus o sound profective film is formed which provides o good ground for the following coats.

Linseed oil is derived from seed of the flax plant by pressing or solvent extraction.

The linseed carries $32-42 \%$ of oil that is pale amber in colour, very slow drying and low in viscosity.

It wos once the only binder used by the point industry. Until the eorly 1970s, it was still used widely in exterior house paints ond in oil and oil/olkyd-based metal primers ond intermediote coots. The row oil, or the olkoli-refined product, gove excellent durobility to these coatings, olthough woter resistance could hove been better os could chemicol resisfonce. Alkoli-refined linseed oil hod better color ond color retention thon row linseed, olthough films would still yellow in the dork ond in sheltered or indoor locotions. Yellowing in ultroviolet light-exposed locotions wos, however, minimol. '

Today linseed oil is used moinly in the preparation of air drying alkyd resins, epaxy ester resins, and urethane oils or uralkyds.

Toxic ingredients

Toxic ingredients, usually smoll quantities of lead, arsenic and cadmium, were commonly used in paint monufacture.

Copper orsenic green pigments were used because of their preservative properties until the 1870s, when chrome oxide green was substituted. Whilst copper arsenic green pigments are extremely toxic and no longer in paint, they are still used to preserve timber (treated pine).

Its (lead) obsence wos often blomed by old-time professionols for point failures but outhorities ogree thot virtuolly the only loss ottributoble to the removal of lead is some covering pawer in o few of the deep colours; the durobility ond opacity thot leod used ta give paint is now provided by synthetic resins ond by other pigments. ${ }^{\text {b }}$

Varnishes

Traditional varnishes were thick liquids that produced a gloss (or flat) coating which dried hard and was usually transparent. Varnishes were made from such basic materials as:
vegetoble oils, fossil gum resins (those dug from the earth), other contemparoneaus gum resins (those gothered from trees ond insects), volotile liquids ond essences, volotile minerol oils, certoin hydro-corbon compounds, metollic solts ond ta o minor extent onimol oils and woxes. ${ }^{\text {. }}$

Copal gums are fossilised gums from past trees; rosin is a gum resin from the pine tree, and shellac gum is produced by an insect on East Indian trees."

Varnish dries in an interesting way.
The volotile thinners evoporote; the drying oils oxydize lobsorb oxygen from the oir and form o solid). As these two separote octions ore performed the gums or resins, being solids dissolved by the liquids, retum to the solid stote, uniting with the drying oil solids. '

Vornishes moy be clossified broadly os:

- oil varnishes
- spirit varnishes
- japans

Oil varnish was used as a finishing medium for paint. Made from various gums, linseed oil and a small quantity of suitable thinners, it dried relatively slowly but to a good strong finish.

Spirit varnish. Shellac is a spirit varnish consisting of gum shellac dissolved in alcohol. It is quick drying, and can be sondpapered easily but does not have a strong finish.

Jopans are a type of point or varnish giving a hord, block glossy finish. Sometimes known as Black Jopon, it is usually mode from natural aspholtums with some drying oil and possibly some resin.

RED LEAD

RED lead is a brilliant scarlet red pigment. It is not used as a colour or for tinting, but for its protective action. It is made by heating metallic lead or sandy white lead in a properly constructed furnace, first producing lead monoxide, which by further heat treatment is converted to red lead. If pure, its chemical formula is $\mathrm{Pb}_{2} \mathrm{O}_{4}$, and it may be regarded as 1 part of lead peroxide (PbO) and 2 parts lead monoxide (PbO). As ordinarily obtained on the market it contains from about 70 to 99 per cent. (usually over 85 per cent.) of $\mathrm{Pb}_{3} \mathrm{O}_{4}$, the remainder of unadulterated samples being lead nonoxide unchanged in the process of manufacture.

Such red lead is a good drier of itself, and when mixed with oil will solidify to a hard mass within a short time. It is necessary, therefore, that the paint be mixed not more than 24 hours before use. To overcome the difficulty of mixing the dry pigment with oil, the red lead is sometimes ground to paste form in non-drying oil, but this practice is not to be recommended. It is also ground mixed with other pigments such as silica, but when so mixed should not be sold as pure red lead. On account of the great specific gravity of red lead the paint made from it is very heavy and flows on stiffly, has a tendency to sag, and is not likely to cover as much surface as white lead. When properly prepared and applied it forms a very tough, dherent coating, and in spite of its drawbacks and rather high price it is the most satisfactory paint in use as a priming coat for the protection of iron and steel. It is also used in wagon painting as a primer for the rumning gears as it will stand knocks and friction that would remove any other paint. It is blackened by hydrogen sulphide or other sulphur compounds, and has a tendency to whiten upon exposure to atmospheric agencies, due to the formation of lead carbonate and sulphate. As its chief use is as a first coat these defects are of no consequence.

Recently, says Circular No. 69 issued by the American Bureau of Standards, a highgrade red lead containing about 98 per cent. of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ has been put on the market, which when ground in linseed oil to a paste form does not harden in the container. Its use obviates the inconvenience of mixing dry lead in oil, and so far as present. knowledge goes, it is equal in every way to dry lead freshly mixed.

Some experts claim that the absence of lead monoxide prevents the paste hardening in the container, and that with an in-
crease in the contents of true red lead the fineness of the pigment increases, thus producing a better working paint, one that gives a more continuous film, flows out better, and has less tendency to sag and run. Other experts claim that the cause of hardening in the container of ordinary red lead is coarseness and not the presence of lead monoxide. The same authority states that some red leads containing only 85 per cent. $\mathrm{Pb}_{3} \mathrm{O}_{4}$ are finer grained than any containing over 95 per cent. and that such fine-grained red leads do not harden in the container. It is not known which of these claims is correct, but the redlead pastes examined in the Bureau that did not harden in the container have been found to be of high purity; that is, above 95 per cent. $\mathrm{Pb}_{3} \mathrm{O}_{4}$.
"Orange mineral" is a form of red lead having a lower specific gravity and lighter colour than the usual form.
The essestials of the U.S.A. Navy Department specification for red lead read as follows: DRY.-Composition: The dry pigment to be of high-grade quality free from all adulterants, and shall contain not less than 94 per cent. of true red lead $\left(\mathrm{Pb}_{s} \mathrm{O}_{4}\right)$, the remainder to be practically pure lead monoxide (PbO). Impurities: To obtain not more than 0.1 per cent of metallic lead, not more than 0.1 per cent. of alkali figured as $\mathrm{Na}_{2} \mathrm{O}$, and not more than 0.5 per cent. of total impurities, which include all substances other than lead oxides. Fineness: To be of such fineness that not more than I per cent. remains after washing with water through a No. 21 new silk bolting-cloth sieve. Comparison with standard example: To be of good bright colour, and equal to the standard sample in freedom from vitrified particles and in other respects. Practical test: When mixed with pure linseed oil, petroleum spirits, and drier, as per standard formula, viz.: Red lead, dry, 20 lb .; raw linseed oil, 5 pt. ; petroleum spirits, 2 gills: drier, 2 gills; and applied to a smooth vertical iron surface, it shall dry hard and elastic without running, streaking, or sag. ging.

Brown paints may vary from colours which are nearly yellow to thuse which are of a reddish hue. Ordinary browns may be said to range from such colours as umber, which is a deep. rich brown, to sicnna. An ordinaty sienna is a typical brown. When these colours are used for painting the outside of frame houses in combination with yellows and various shades of olive green, it is usually best to keep them somewhat dull in tone. There are many ordinary yellows, and there is a wide range of deep, dull reds which might be called the principal browns in compmon use.

Water-based paints

Limewashes

Limewashes, essentially slaked lime and water were used to paint rendered masonry and were inexpensive. Colours were limited by the need for the pigments to be alkali-stable. Sienna, red and yellow ochres, and Venetian red were commonly used and a grey-blue was possible.

Recipes for limewashes are varied and plentiful (Further examples are in the appendix.) One recipe issued by the United Kingdom Bureau of Lighthouses in around 1918 was said to be very good for outside exposure and is as follows:

Slake half a bushel of unslaked lime with boiling water, keeping it covered during the process. Strain it and add a peck of salt dissolved in warm water: 3 lb of ground rice put in boiling water and boiled to a thin paste; $1 / 2 \mathrm{lb}$ of powdered Spanish whiting; and 1 lb of clear glue dissolved in warm water. Mix these well together and let the mixture stand for several days. Keep the wash thus prepared in a kettle or portable furnace, and when used put it on as hot as possible with painter's or whitewash brushes.

INDELIBLO EXTERIOR Cold Water Paint STANDARD TINTS

No 272

No. 201

No 212
ALSO MADE IN WHITE

CASEIN COLD WATER PAINT

WHERE TO USE IT

This Cascin Vehicle Cold Water Paint is especially designed for exterior use and resists the weather remarkably well, but it can also be used for interior work. It is highly satisfactory for surfaces that are clean, dry and firm, on many types of buildings (both outside and inside) some of which are listed below:
Farm buildings, daities, barns, silos and poultry houses, where a good durable paint that is less expensive than oil paint is desired.

Factory buildings, mills, breweries, warehouses, work shops, garages, tool houses and storage bins,

Semi-exposed surfaces such as light shafts; nirways, airshafts and courtyards of apartment and other buildings where frequent painting is required principally to maintain clean, attractive, light-refiecting surfaces.
Temporary buildings and structures where the length of service required does not warrant the use of high-priced materials.

Summer cottages, bungalows, road-side refreshment stands and petrol stations.

Grandstands, track equipment, fences, stables, and buildings in fair grounds, race tracks, athletic fields and amusement parks.

Cold-water paints or calcimines had as their bosis whiting or carbonate of lime instead of caustic lime, as in whitewash. Because the material itself does not adhere it was necessary to use a binder of some kind, generally glue or casein.

Distempering

Distempering refers to any method of applying colours that are mixed with a glutinous substance soluble in water such as glue, gum, casein (milk powder) or white of egg. ${ }^{.3}$

The whole of the distemper must be strained while warm, in order to remove all impurities and thoroughly mix the colour. When this is done the distemper may be put into a cool place till it is formed into a weak trembling jelly, which is the only proper state in which to apply it to walls. ${ }^{14}$

Distemper may be either size-bound or oil-bound .

Size-bound distemper can be washed off completely. (Some calcimines, which have a casein binder instead of glue, are difficult to remove.) Kalsomine was a trade name for the flat-finish size-bound distemper used commonly in this country. Since Kalsomine had the disadvantage af being subject ta water stains, in hallways or similar heary-duty areas the lower part of a wall - that is below the dado - was protected with a layer of varnish.

Oil-bound distemper, also known as 'water paint', had different formulas for external or internal use.

External oil-bound distemper is similar in appearance to limewash but, unlike limewash, will adhere to ordinary portland cement renders. One such distemper was Hollins distemper (an early Walpamur Water Paint).

Distempers were the precursor to modern synthetic emulsion paints and were still widely used for interiors up until the early 1950s.

Emulsions are made of both oily and watery constituents. The curd of milk is a natural emulsion and was also the binder used to make casein paints in the early 1920s. These paints were the first water thinnable paints produced commercially.

Since the 1920s UV stabilisers and anticoagulants have been developed and new materials such as nitrocellulose, phoenolic and alkyd resins, synthetic resins, pigments, extenders and modifiers have been used in paint.

Pigments

Historically most pigments originated from natural sources such as ochre and carbon. The singularly most important manufactured pigment was white lead. The making and preparation of white lead has in principle changed very little during the ages.

White lead

Thin lead sheets were loosely rolled and hung over vinegar in sealed pots that were then buried in animal dung. The heat from the compost caused the vinegar to vaporise and oxidise the lead. This early method, known as the 'stack method', was superseded by an electrolytic process.

Gehrig notes thar up until Warld War 1 all white lead used in Australia was imported from overseas. Thereafter it was manufactured here by B.A.L.M. (British Australian Lead Manufacturers Pty Ltd that finally became known as Dulux Australia Ltd.) ${ }^{13}$

Lead pigments were popular because of their remarkable resistance to fading and their excellent corrosion prevention properties.

White lead bound well with linseed oil and, when formulated into paint, gave a high gloss level. Such formulations performed extremely well.

White lead wos used in oll phoses of o coating system, thot is os o primer when mixed with red lead; os on undercoot when mixed with oil and turps ond os o finish caat when mixed with row ond boiled oil. It did have the disobility of 'powdering' or 'cholking' if exposed to the exterior but most trodesmen considered this on odvontoge for the surfoce normolly required anly o light sonding ond wosh down prior ta repointing. ${ }^{\text {'s }}$

The other mojor problem that is now evident is toxicity. See pp 58 \& 73.

Leod-linseed oil mixes required only a small addition of dryers to produce a workable paint. Other types of paints using pigments such as zinc white required a greater addition of dryers and this affected the cleanliness of white.

Zinc oxide

Zinc oxide is a non-poisonous opaque white pigment that has excellent covering power. It dries relatively slowly and contributes to the gloss and hardness of the finish.

Titanium diaxide

This pigment is one of the mast used pigments in today's paint manufacture. Titanium dioxide is a brilliant white pigment with high opacity.

Coloured pigments

Earth pigments were the basis of the majority of colours in early use.

Yellow pigments

In the area of yellows Ochres were the main pigments and were the basis af such calaurs as ivary, cream and light stane. There is great variation in the colaur af naturally occurring ochres.

The Mount Barker Courier newspaper in 1889 reported on valuable deposits in that district:
'Advance Austrolio' in the Advertiser with much justice, drows ottention of public ta the Mt Rhine Silver Mining Ca., and the great value which attaches to thot
property from the olmost unlimited deposit of ochre which is preferoble to the imparted orticle ond os it will have the odditional merit of cheapness shauld meet with reody fovour fram the coloniol oil and point men. ...vost deposits of ochre uneorthed of Meadows ond somples of vorious colours obtoined may be seen of the 'Courier' office.

A further article later in the same year refers to colour:
The monoger of the Mt Rhine Point foctory remorks he hos turned out bulk somples of ochre ond points equal to ony he hos used in the colony. The ochre when properly washed is o splendid article, thot from the winze is the best, it being equol to sienno, the imported volue of which (when ground in oill is obout seventy pound per ton.

The quontity in the mine is lorge ond easily obtoined. He hos calcined some ond obtoined a rich purple brown ond he volued alsa some very good reds. The dorker ochre from the upper port of the mine mokes good umbers. ${ }^{17}$

Noples yellow was a particularly popular colour. Of the various recipes, Gehrig considers the one most likely in Australia wauld have been 'the result of mixing yellow achre with ceruse... in ather words, the addition af white lead to lighten the colour of the ochre'. ' Ceruse is a form of white lead.

Other yellows included Patent yellow which was a cheap pigment made, it appears, by simply 'mixing together two parts litharge and one part of marine salt'. ${ }^{19}$

Chrame yellow, which produced a bright yellow, superseded patent yellow in 1830 .

Yellow oxide was widely used particularly in lime washes as it was unaffected by the action of the lime.

Terro Di Sienna, an earth pigment fram Italy, had transparent praperties and a reddish tint. It was widely used in the form of burnt sienna and praduced midstone and apricot colours.

Red pigments

Red lead was derived from white lead and the colour came from exposing lead ta high temperatures (up to $1600^{\circ} \mathrm{C}$). After cooling the resultant vaporised lead and driving out carbon monoxide, the lead oxide was further exposed to higher temperatures to achieve a bright arange colour.

These pigments were popular because they were colour fost when exposed to sunlight.

The taxicity of this pigment was well known; nevertheless it remained in cantinued use until suitable, safer alternatives, which were commercially viable, became available.

Vermilion was possibly the brightest of the red colours. It consists af mercuric sulphide and is found in natural form in quicksilver mines.

Indion red was widely used because it was one of the earliest artificially produced pigments and therefore cheap.

Sponish red was also an inexpensive and popular pigment and was able to be used in limewash. 'Its cheapness and good weathering qualities made it extremely popular for exterior use, especially in the pointing of exterior corrugated iron roofs, ${ }^{23}$

Cormine was an expensive, and lesser used, pigment which had a tendency to purple. It was derived from insects (cochineal) and the best quality was from France.

Brown pigments

Van Dyke brown was extensively used. It was a dark blackish-brown colour that was inclined tawards purple.

Sponish brown was obtained fram iron oxide.

Umbers were used bath as raw umber and burnt umber.

Green pigments

Verdigris was the green corrosion of copper ar brass formed by the action af acid. The colour was originally a blue-green but varied according to the method of production.

It wauld be olmost impossible to oscertoin which colour existed in Austrolio during the 18th ond 19th centuries. The use of bronze cauld produce o different green to thot obtoined by using bross or copper. Vinegor would give different results from thot of gropes thot were used in Fronce. ${ }^{2 t}$

Green oxide was commonly used as a pigment in limewash and, like yellow oxide, was not attacked by the alkali of the lime. It had gaad weathering properties making it suitable for outside exposure.

Terro verte was an earth pigment imparted from England.

It wos soon superseded by synthetic moterials such os Poris green, chrome green and Brunswick green. Chrome green ond Brunswick green become quite popular: when mixed with copal varnish ond linseed oil they were extensively used os trim calours. ${ }^{22}$

Blue pigments
Ultromorine was a pure pigment that came from the semi precious stone Lapis Lazuli and, as such, was very expensive to produce.

Lopis Lozuli consists essentially of the blue minerol lozurite ond contoins smoll omounts of calcite, pyroxene, and other silicotes. Smoll particles of pyrite, which give the appearance of gold specks, are chorocteristically disseminoted through the blue rock. ${ }^{23}$

It is likely that most of the ultramarine used in Australia would have been the less expensive artificial product that was first made in 1805 .

Prussion blue was an animal-based pigment from Germany and was most sought after 'as it produces a far cleaner blue (with a slight green tint) than does ultramarine'. ${ }^{\text {i4 }}$

Cobalt blue. First produced in 1804 it quickly became popular and remains so. It is a mixture of the salts of cobalt and aluminium.

An article from a 1921 South Australian gazette，titled ＇Choice of Colours＇，refers to the tinting power of certain pigments：

The exceptionally strong finting powers of some of the colours should be taken into account when mixing，for if these strong colours are used too liberally more white is required，and thus too much colour is made up，and is possibly wasted．As instances of tinting power，it may be mentioned that 1 lb ．of Indian red or chrome yellow will perceptibly tint a ton of whitelead， and that 1 part of Prussian blue will similarly affect 5,000 parts of turpentine．Lampblack，and the oxides of iron，such as Venetian red，Indian red，and the ochres，are good colours for outside wear，and are better adapted for this purpose than the umbers；but Turkey umber and Turkey red rank next to yellow ochre and lampblack for outside work，provided that they are ground in good oil．2？

Changes in paint technology

Changes in paint technology occurred following both world wars．Richard Aitken states：

In 1927 a synthetically produced resin known as Alkyd was first formulated．

Dulux Super Enamel，released to the Australian public in 1933 by the British Australian Lead Manufacturers company（BALM），typified the new line of alkyd resin paints．The introduction of Dulux had resulted from a 1928 agreement between BALM and Nobel Chemical Finishes，a joint enterprise between chemical giants ICl （British）and E．I．du pont Nemours（USA）．

Du Pont had developed nitro－cellulose lacquer （or＇Duco＇to use the American trade name）after World War 1 to use surplus quantities of the explosive nitro－cotton

The non－poisonous，rust－resisting Roof Paint for use on GALVANISED IRON and all Iron and Steel Suriaces．

Ervin the Greve is mon－poizonois and fudelo．．
－
Major Bros．\＆Co．，Pty．Ltd． CONCORD，SYDNEY．

in every tin

GUARANTEED 1st QUALITY

＂Majora＂Pure Mixed Paints ote the sesth al over 50 veate practical and scientife expertotion－inoy ate
 heavy amdimy mochinery lism sarghaly aolected tas materiate sesentificaly ectitolled in their Emi bumancim nt as to areuth maximutr covenng durs－ bility and apprsarancer
＂Majora＂Pure Mixed Paints are stritable Let ittorter or exterior doceration，they dry with a fitie glessy aptearance art retam homs histro and cotout indelintoly

－

Major Bros．\＆Co．，Pty．Ltd．

CONCORD，SYDNEY，N．S．W

Cable and Telegraphic Addreas：＂MAIORA，SYDNEY． Phone：UI 5351 （ 6 lines）．City－B7945（2 lines）和以是

Courtesy: Alan Feder, Solver Paints
The South Australian company Solver introduced Solaflex and alkyd enamels soon made inroads into usage of traditional oil-based paints. ${ }^{20}$

Aitken notes that resin emulsion paints (water based and the first real competition to Kalsomines) were in use at the start of World War 2. They were superseded, however, in the mid 1950s by both styrene-butadiene ['latex' - developed in America to utilise a huge post-war surplus of rubber-based products) and PVA emulsion paints ('vinyl' - developed in Germany during World War 2 because of limited access at the time to natural oils).

Despite the advantages of these new products - that is, ease of application and being able to be washed up in water - there was reluctance on behalf of many trade painters to accept the new technology.

Acrylic paints, which 'were developed by Du Pont in the 1940 s to use surplus post-war supplies of perspex', 'became prominent in house painting in the late 1960s and early 1970s.

Easy to Clean

It is not possible to clean, successfully, a Lead-and-Oil paint film, but it is a simple operation to wash the porcelainlike non-porous surface of nu-enamel Enamelised Paint and, thereby, restore its original lustre and beauty. original ustre and beauty.
Washing costs much less than repainting-Save the difference !

From the year 1521 when the Dutch introduced Lead-and Oil, until NU-ENAMEL invented Enamelised Paint, there had been no advancement in the basic method of manufacturing paint. Think of it-over 400 years of stagnation. It is small wonder that, almost over-night, NU-ENAMEL Enamelised Paint became the most discussed paint in the world.
For many centuries the ancient Chinese have been using a natural nut oil, called TUNG-OIL, for preserving their boats. bridges sacred idols, etc. Modern Science knew of this product but it remained for NU-ENAMEL to discover the process for using Tung-Oil as a base for paint, enamel and varnish.
This process requires that the Tung-Oil be scientifically heat treated. and that the nirments-zine oxide and titanium

Why NU-ENAMEI. Enamelised Paint eaped into world leadership

> Very Long Life How long did your last exterior paint job retain its original appearance? The average life of NU-ENAMEL Enamelised Paint by far exceeds that of ordinary Lead-and-Oil Paint, and this survey includes hundreds of homes in climates hundreds of homes in climates
where the damp, salty air quickly destroys ordinary paints.

oxide-be accurately balanced in relation to themselves, and to the Tung-Oil base. Each of these three basic ingredients possess certain distinct virtues not found in ordinary Lead-and-Oil paint. For example, Linseed Oil will combine with mist or rain and disappear from the paint film; Tung-Oil is waterproof-it remains in the paint film indefinitely. The Lead pigment in ordinary paint not only lacks strength but it oxidizes (a chemical burning) more rapidly, causing immediate chalking and colour fading. The pigments used in NU-ENAMEL Enamelised Paint remain hard in the Tung-Oil protection so that chalking, fading, and oxidation are retarded to an absolute minimum.
Your NU-ENAMEL Dealer will amaze you with many more Your NU-ENAMEL Dealer will amaze you with many more

Courtesy: Alan Feder, Solver Paints

Paint charts

The introduction of pre-mixed paint in the mid-to late-Victorian period helped popularise the use of charts depicting colours. These were originally in the form of a printed card with individually affixed paint samples, as even the most sophisticated of early printing techniques could not satisfactorily reproduce the required subtleties of colour.

It was not until the late 1940s that adequate representation of colour was possible with a printing process known as McCorquodale. ${ }^{28}$ The process uses 'nitro-cellulose lacquers tinted with exactly the proportions of the actual paint' and is still used by most paint companies. ${ }^{28}$

Paint charts continually reflect fashion. The pastels of the 1950s and the colour 'Schiaperelli Pink' are examples.

In tracing the history of fashion in paint colours Aitken comments on the trend in the 1980s of having 'heritage colours' on paint charts and links the fashion of following these prescribed schemes to commercial success of paint companies. He argues for more individual use of colour and states:

Perhaps henceforth such colours can become divorced from fashion trends and be used more seriously by those seeking to authentically restore a specific scheme rather than indiscriminately evoke an era. ${ }^{20}$

Standards for paint colours

Just as the recording and research of music is extremely difficult without a system of notation, so is the case with colour. ${ }^{31}$

Traditionally names have been used to identify colours, and people still like to refer to them in this way. The use of names for colours is, however, fraught with problems. 'Duck egg blue', for example, may or may not resemble an egg of a duck and is a difficult colour to imagine.

In response to confusion about paint names the British Standard for point colours was published in 1930. It had as its basis the Munsell system that had been introduced in America in 1915.

Names for paint colours were still used in the British Standard (for example 'British Racing Green'), but values from the Munsell system were also included and so a greater accuracy was possible. In 1985 Australia adopted its own similar standard.

Colour systems

Munsell system

This system is based on the attributes of hue, value and intensity. Colours are arranged in a threedimensional colour space or solid. There are ten major hues in the form of a horizontal circle around a vertical central axis. This axis extends from white at the top to black at the bottom in ten steps. The value notation of a colour indicates its lightness as measured on the neutral axis. The chroma notation indicates the degree of departure of a given hue from a neutral grey of the same value.

Any color can be specified by its position in the solid in terms of its notatian af hue, value, and chrama. Far instance, 'turquaise blue' may be described as a blue-green and specified as $B G 6 / 4$. This color is represented in the solid by a blue-green chip at the sixth level of value and at the fourth step in the chroma scale. ${ }^{32}$

NC S system (Swedish Natural Colour System)

In this system colours are regarded as a combination of 'nuance' and hue - nuance being comprised of the whiteness and blackness of a colour plus the chromaticness. The first four digits of NCS describe the nuance - the first two the increasing blackness and the second two the chromaticness. This is a system based on a natural perception of colour. It is independent of physical colour samples. The theory is bosed on Edwald Hering's postulate that every conceivable colour can be indicated with reference to its greater or lesser resemblance to the six elementary colour sensations viz: white, black, yellow, blue, red and green. ${ }^{33}$

The Munsell system from two perspectives.

The COLORCURVE calaurs are arganised in what is knawn as CIELab*calaur space. CIELab has its raats in calaur measurement and the prablem af establishing a 'calaur difference farmula'. The CIELab farmula has been adapted as an internatianal standard and it is naw widely used. ${ }^{34}$

It is highly technical and the data fram this system is able ta be sent between manufacturers, and even between cauntries, with calaurs being repraduced accurately as a result.

Decorative finishes

As well as painting in plain calaurs, ather farms af decaratian became papular in public buildings and better hames. "Thase finishes included glazing, graining, stippling, stencilling, and marbling (faux mabre). Further references are given at the end af this sectian and brief descriptians fallaw.

Jainery was 'frequently grained ar marbled in Australian hauses af the nineteenth century and may be seen in hauses as late as 1920s. ${ }^{35}$ The practice came about as the result af building awners aspiring ta mare affluent finishes.

Glazing

A transparent calaur ar cambinatian af calaurs is applied aver an apaque base caat. Glazing liquids were usually made fram good quality varnish, ail and turpentine. Different effects were abtained by blending the calaurs using rags, stipple, spange etc.

Nate: A glaze is a semi-transparent film af ail-based calaur, while a wash is a semi-transparent film af calaur diluted with water.

Innes writes af the subtle visual differences between the twa that 'ail-based calaur tends ta be richer, sleeker and mare transparent, while calaur in water is fresher, purer, still diaphanaus, but "brushier" looking'. ${ }^{37}$

Bath are used aver painted surfaces ta alter the calaurs beneath.

Graining

The imitating af the grain af variaus, usually expensive, timbers. Gaod tradesmen took particular pride in their expertise at this process. There are excellent ariginal examples still preserved and there is a resurgence af interest in the pracess. Practitianers af the craft are available.

Stippling

The decarative pracess of applying a secand calaur aver a previausly applied graund calaur in a braken manner by use af a spange ar raller.

Stencilling

Wark in which calaur and design are transferred thraugh paper ar metal patterns directly anta a surface. Stencil brushes, a little like shaving brushes, were used, as were small rallers. Stencilwark was aften used as a decarative feature at the dada line.

Marbling/Marbelising

The imitating af marble, cansists af 'laying an a good graund calaur and then tracing the pattern af marble in ather calaurs, using special taals and equipment ${ }^{\prime 28}$. Veining was aften achieved by the use of feathers.

Tartaiseshelling, ebanising, bambaaing and even trampe-l'aeil ('to deceive the eye') are amang ather decarative finishes which may be encauntered.

Reference notes:

1. Master Painter: A skilled painter qualified to teach apprentices and to carry on his trade independently'.
2. Keith Gehrig, A Guide to Traditional Painting Techniques. Research Study no. 9, The Heritage Council of New South Woles, 1985, Intro., p. 1.
3. ibid., p. 2
4. Theo Audel, Painting and Decorating Working Methods, International Association of Master Painters and Decorators, New York, 2nd ed., 1945, p. 47.
5. Gehrig, op. cit., p. 43
6. Keith Gehrig, Bill Stewart et ol., Paint and Wallpaper. Time life 8ooks, Amsterdam, 1984, p. 52.
7. Clive H. Hare, Materials Technology - Anatomy of Paint, 'Vegetable Oils', 1994.
8. Gehrig \& Stewart, op. cit., p. 52
9. Audel, op. cit. p. 72
10. Copal varnish: See Appendices.
11. Audel, op cit, p. 73.
12. Building World (U.K./ 20 July 1918, 'Water Paints': Peck - A dry measure in the Imperial system, equal to 8 quarts

Lime - the oxide of colcium, a white coustic solid (quicklime or unsloked lime)

Slake - to disintegrate or treat (lime) with water or moist air, causing it to change into calcium hydroxide (slaked lime)

Bushel - a unit of dry measure in the Imperiol system and equal to eight gallons.

Whiting - a pure white chalk (colcium carbonate) which has been ground and washed
13. Practical Home Decorating and Repairs, Odhoms, p. 76.
14. Lee's Priceless Recipes $\{3,000$ Secrets For The Home, Farm, Laboratory, Workshop And Every Deportment Of Humon Endeavorl p. 230
15. Gehrig, 1985, ap. cit., p. 10.
16. ibid. p. 11.
17. Mt Barker Courier, 1889.
18. Gehrig, 1985, op. cit., p. 12.
19. ibid. p. 13
20. ibid., p. 15
21. ibid., p. 14.
22. ibid. p. 15.
23. Surface Coatings - Oil and Colour Chemists Associotion publicotions.
24. Gehrig, 1985, op. cit. p. 14
25. The Builders' and Contractors' Weekly Gazette. 'The House Decorator Choice of Colours'. 27 June 1921
26. Richard Aitken, Room with a Hue: the point chart in Australia (Historic Interiors Conference, Adeloidel 1993
27. ibid
28. Cards produced by the McCorquodale process had a doting system. The month and year is indicated and is observable on examples of old point cards.
29. Aitken. op cit
30. ibid
31. Paul Green-Armytage, Colour Order Systems for Designers - Pantone, NCS and Colorcurve: Spectrum, vol. 9, no. 2. April 1995
32. Waldron Foulkner, 1972 p. 110
33. NCS Colour Order and Scaling System C8 Fackskrift nr 8 Svenskt Fargcentrum (Swedish Color Center Foundation) p. 1.
34. Green Armytage, op cit.
35. Gehrig. 1985 p. 20
36. Ian Evans, Restoring Old Houses, Macmillan. Melbourne. 1980, p. 104.
37. Jocasts innes, Paint Magic, Doubleday, NSW, 1985, p. 224
38. Gehrig. 1985, op cit, p. 25

6 CONTEMPORARY PAINT PRODUCTS

A study of existing paint finishes as well as the body and condition of the building will enable remedial work to be planned and the appropriote paint system chosen.

Paint

In broad terms paint is any liquid, or thin paste, applied to a surface for the purpose of protection and decorotion. It may be opaque whereby it conceols a surface well; it may be semi-transporent, allowing the surface to show through dimly; or it may be so transparent as to hide very little of the surface substrate.

Paint is used to protect the building fabric surface from destruction by the natural elements: sun, rain, wind, cald and frost. Paint arrests wood decay by seoling up the pares and keeping out moisture. It pratects metal by preventing rust formation (corrosion by-product) ond it preserves other materials by keeping out moisture.

When dry, paint may have a full gloss finish, a semi-gloss (also called satin or eggshell), or it may be flat (that is, without gloss). The degree of gloss is dependent on the proportion of paint vehicles which dry flat.

Paint components

Most paints or, as they should be correctly termed, coatings are comprised of four basic companents: binder, solvent or thinner, pigment, and additives.

The combination of the binder and solvent is known as the 'vehicle'.

Solvents

Solvents are volatile liquids used to dissolve the resins and binders to make them suitable for application as a thin film. They evaporate completely from the paint film after application but contribute impartant characteristics to the coating during drying.

Typical solvents can be water, turpentine and alcohols.

Resin or Binder

Paint is classified by the type of resin or binder that binds the particles together and anchors the coating film to the surface.

The binder has great influence on such praperties af the coating as film thickness, cahesian and hardness, and the ability to form a thin tough film.

Resins were ariginally the natural secretions of certain plants and insects but now consist mostly of manufactured chemicals. Binders can be vegetable oils, alkyd resins, acrylic resins, Poly Vinyl Acetate (PVA).

Pigments

Pigments are insoluble solids in finely divided powder form which contribute colour and other properties to the coating. They can be organic, synthetic or metallic; examples are titanium dioxide, carbon, micaceous iron oxide, and ochre.

Anticorrosive pigments such as metallic zinc, zinc oxide and phosphates are also used.

Organic pigments praduced fram petraleum and coal-tar oil have largely replaced inorganic pigments which are derived mostly from coloured earth and metals.

Additives

This general term covers a wide range of important materials that are added ta impart specific praperties to the coating. One group known as extender pigments are used to cheaply increose the volume solids af the caating, and athers used are dryers,
ontisetting and antiskinning agents, wetting aut agents and biacides. Plasticisers are impartant additives that imprave and enhance the praperties of caatings.

Curing of coatings

There are a number af ways in which paints cure. Curing means that the binder farms a salid, cantinuaus film that pravides the desired protectian. The term 'drying' is aften used to mean curing rather than simply salvent evoporotion. A single binder type moy, with apprapriate modification, cure by o number af different mechanisms. Acrylics, far example, moy cure by coalescence ar chemical reactian between twa campanents and dry by salvent evoporotion. It shauld be nated that mast paints have some solvent thot will evaporate. Hawever, camplete curing af the film requires mare than loss of solvent.

Water-based paints can be thase where the binder is truly saluble in water, far example 'Kalsamine', but are mare cammonly emulsions which consist af polymer particles suspended in woter.

As the water evaparates, the polymer particles tauch (these are knawn as caalescent binders) and flow into ane anather ta farm a cantinuaus film. These paints are knawn as latex paints.

Examples af water-bosed coatings ore ocrylic emulsians, PVA or 'plastic' paints, and epaxy emulsians.

Enviranmental and health constraints have initiated same cansiderable interest in the develapment af water-based caating systems and their use will undoubtedly increase.

Solvent-bosed enamels dry but da nat fully cure for many years. In this dry but uncured state the ails slawly axidise ar leach out. Once this type of coating has fully cured it becomes brittle or friable and is at the end af its serviceable life as o coating.

Types of paint

The types of paints are initially classified by their solvent; for example, ail-based paints and water-
based paints, and then by the binder type: alkyd, epaxy, palyurethane, acrylic etc.

A definition that is aften quite erraneausly applied ta paint categaries is that af arganic or inorganic. The scientific definition of these terms is that arganic applies to compaunds that have one ar mare carbon atams, whilst inarganic applies ta materials that da not contain any carban. Woter (H 2 O) is inarganic, far example, ond furpentine is organic.

Each categary can be further divided into the campanents of the paint system, primers, undercaats, finish caats; for exomple, we can describe a paint os 'an arganic salvent bosed alkyd undercaat'.

Primers

A primer is the first coat of point ta be applied Its main functians include:

- praviding adhesian to the substrate;
- praviding good intercoat adhesian ta subsequent caats;
- regulating maisture movement;
- preventing bleed thraugh af tannins and resins faund in timber;
- praviding carrasian resistance in the case af metals.

In the past it was generolly agreed thot the priming coat shauld be af the same compositian as succeeding coats so thot the different coats cauld unite with each ather to form a single, campact, impervious paint film.

With odvonces in paint technalagy it is now possible ta change fram an oil to a water-based product ond likewise fram a water to an oil-based material if the carrect intermediote barrier, as well as the carrect preparatian, is employed. Advice fram paint manufacturers is helpful if this is contemplated.

Wood primers

Woad is a porous hydrophilic material of relatively paar dimensionol stobility. It maves substantiolly with changes in moisture. Hence primers are required ta regulate the rate ot which moisture enters ond leaves the wood and which are able to follow movements in the waod with the minimum rate of cracking.

- Organic solvent-based wood primers

Traditionally primers were formulated to pigment concentrations of $35-45 \%$ with drying oil as the binder. In more recent times mixtures of oil and alkyd resins, or in some cases just alkyd resins as the binder, have been used.

The use of alkyd resins substantially speeds up the drying process allowing faster over coating.

- Water-based wood primers

Water-based wood primers usually have an acrylic emulsion as their principal binder, and these are acrylic emulsions that are ideally suited for timber because of their adhesion and excellent flexibility.

Emulsions are thermoplastic (heot softening) and do not dry by oxidation. This is in contrast to the solvent-based oils and alkyd resins that dry by oxidation and continue to oxidise for the rest of their life, leading to embrittlement and loss of flexibility. Thus the water-based primers are more able to follow the movement of a dimensionally unstable substrate such as timber, with a minimum of cracking.

Some timbers contain natural tannins that are water-soluble. This can cause problems if the whole paint system (primer, intermediate and topcoat) is water-based, as unsightly brown stains will appear in all coats. Special additives ore needed in the primer.

The current materials that suppress tannin staining are zinc oxide, barium metaborate and special acrylic emulsions that fix the tannin in the first coat. There are newer emulsions being developed which suppress the staining physically by forming very tight films.

Some formulators choose to include a vegetable oil or alkyd resin into the formulation to provide better adhesion, particularly to chalky or powdery surfaces.

- Metal primers

Metal primers tend to be formulated for specific metals. in the case of steels (ferrous metals), traditionally the primers contained substantial quantities of red lead.

Owing to health reasons this practice was generally discontinued in about the mid 1970s. The traditional
red lead primer was then replaced with red oxide zinc chromate, often referred to as R.O.Z.C.

These have been largely discontinued because of environmental concerns with chromates.

Chromates present an environmental disposal problem as they are water-soluble and therefore make their way into the water table and do not readily break down.

- Organic solvent-based metal primers

Today the most common ferrous metal primers contain red oxide zinc phosphate. The resin systems used are either alkyd or phenolic-modified oils. The level of rust-inhibitive pigments such as zinc phosphates is important. Good primers contain up to 150 kg per 1,000 litres of such pigment.

Aluminium primers generally contain yellow zinc chromates rather than red oxide as this can cause pitting of the aluminium surface.

The use of chromates is largely discouraged because of environmental concerns. However, at present there is no effective replacement for them as an aluminium primer.

Both the above primers are distinctly coloured and may give base colour problems when overcoated with paints that are not fully opaque. in such instances white or pale-coloured primers are preferred. White pigments such as zinc phosphate, barium metaborate and calcium molybdate are sometimes used as a substitute.

For hot-dip, galvanised steel sections special primers must be used. These include one- and two-pack zinc oxide-zinc dust products.

- Water-based metal primers

Water-based metal primers have been growing in popularity over the past decade and the majority is now based on acrylic or styrene acrylic emulsions. One of the most difficult problems with these formulations is to obtain consistently good adhesion, especially where greasy or oily metal is involved.

Emulsian madificatian or the use af additives (such as sodium nitrite) ar slawer evaporating amines rather than ammania has avercame ather prablems such os flosh rusting.

Inhibitive pigments ore necessary an steel ta prevent rusting and are preferred an galvanised substrotes to minimise farmatian af white carrasian praduct and blistering. Zinc chromate is still perhaps the best pigment far carrasian inhibitian, but it daes have toxicity ond calaur disadvantages. Other white inhibitive pigments such as zinc phasphate, barium metabarate and calcium malybdate are grawing in populority.

Woter-bosed metol primers can exhibit a number af adhesian prablems. Same acrylic-based primers disploy poor odhesion to metal when avercaated with salvent-based alkyd enamels. Same styrene acrylicbased primers have gaad metal adhesian but very paar inter-caat adhesian ta salvent-based olkyd enomels.

Undercoats

Historically, different undercaats were affered specifically for interiar ar exteriar use. Today mast undercaats are suitable far bath.

Far interiar applicatians an timber it is usually adequate ta apply an undercaat as the first coat, withaut using waad primer.

An undercaat far interiar applicatians shauld have the follawing praperties: good drying, gaod flaw, very good glass haldaut (retentian af glass level ance dry), free sanding ability and law odaur.

Becouse interior opplications are often on areas such as cupboards ond doors thot moy be viewed critically the properties of glass and flaw af the paint system are important, ond low adaur is required because af the passible need ta live in the dwelling during pointing.

Exteriar applicatians, an the ather hand, need a slightly different balance of praperties. Outside, the undercaat must be applied over primer and it needs - slow salvent sa that brushing praperties can be mointoined. It must have the ability ta bridge acrass cracks, and abave all it must give durability ta the system.

- Organic salvent-based undercaats

The trend aver the past few years hos been ta undercoats thot da nat cantain free oil. These undercoats affer much better drying, sanding and over coating praperties. Durability studies shaw no adverse effects fram nat using free ail, althaugh care shauid be taken when these undercoats are applied over heavily chalked old finishes.

Special purpose undercaats far humid or tropical areas can be farmulated using pigments such as zinc axide. Zinc axide is a reactive pigment, and care must always be taken to ensure that the farmula daes nat cantain resins with high acid values because the reoction can lead ta rapid soap formotion (see Saponificatian) and to excessive viscasity increoses an storage.

- Water based undercaats

These have a substontial odvantage aver the solvent-based anes in as much as they ore tauch dry in less than an haur as appased ta 4 ta 8 haurs and are recaatable in 2 haurs. The paint brushes, rallers etc. can be washed aut with water rother thon turps ond they ore nan-yellawing. The disodvantages are, far interiar use, poorer flaw aut and far exterior use, their inferiar adhesian ta powdery or chalky surface. In general they are not as easy ta sand

Most are bosed on vinyl/acrylic or ocrylic resins.

Finish coats

- Organic solvent-based full gloss finishes

It is still a practice to sell separate products for exterior or interior use, although it is quite possible to formulate paint suitable for both services.

White lead was traditionally used in these paints. The removal of large quantities of lead from these paints from the mid 1970s has instigated the development of alternative pigments such as Titanium dioxide and re-formulation of the product.

Prime requirements are goad opacity, high gloss, and good exterior durability.

The choice of resins used in the formulation depends on a number of factors. The resin can be based on linseed, soya or sunflower oil, or blends of them.

Straight linseed is not suitable for white interior finishes as it tends to yellow, even when not expased directly to sunlight. It is usually blended with sunflower or tall oil.

Most companies produce a basic white and a range of tint bases for the paint of sale addition of tinters. These tint bases are usually referred to as 'light', 'deep' and 'accent'. Each is tint strength adjusted to a consistent level so that reproducible colours can be obtained. These tinted paints are now as colour-fost and as stable as the traditional factory-milled colours, and the use of a tint system has given the consumer a much greater colour range from which to select.

- Water-based exterior gloss finishes

For exterior use the rap quality water-based gloss finish can be expected to perform much better than a solvent-based one. They have better chalk resistance, flexibility and gloss retention. Initial gloss and flow out properties are not spectacular but these properties are not as critical for exterior uses.

Life expectancy can be two or three times that of solvent-based gloss finishes, provided adequate care is taken in the application and in the correct selection of primer coats used.

Exterior gloss finishes are usually based on emulsion resins, and those based on pure acrylic are the best performers. The thermoplastic nature of these products allows good flexibility and movement with the substrate.

Extreme care must be taken when overcoating old surfaces which previously have had solvent-based paint on them. Thick, old, weathered, alkyd coatings should not be overcoated. The water-based gloss will adhere tenaciously to the old alkyd and then expand and contract with the substrate movement, whereas the old point can not follow the movement of the topcoat. The result is delamination or sheer of the paint system.

- Water-based interior gloss finishes

At present the interior gloss finishes are not able to match the solvent-based ones in gloss level or hardness. They are more difficult to apply as they generally do not tolerate 'laying off' (re-brushing the freshly applied paint to even the finish) and have a tendency to 'block' (sticking together of painted surfoces). However, they dry foirly quickly, have low odour and water wash-up.

Some products are available that use water solubalised or dispersed resins with an emulsion. These products have a good gloss and water wash-up but have drying characteristics more like solvent-based alkyds than water-based paints.

- Organic solvent-based semi-gloss or satin ename/s

These are basically the same as the full gloss range but are formulated to a lower gloss level, usually $\mathbf{2 5 - 5 0 \%}$ at 60°. Flattening agents are added to achieve this.

- Organic solvent-based flat enamels

The use of these products has diminished over the past twenty years or so with the advent of flat water-based products. They should be used in preference where application has to take place at ambient temperatures of less than $12^{\circ} \mathrm{C}$.

- Water-based exterior Hot, low-sheen, sotins and semi-glass finishes

Acrylic-based paints ore by far the better perfarmers for exterior exposure. PVA-ocrylics are generally cheoper ond nat quite as good. PVA is generally not suitable.

- Woter-based emulsians finishes

These paints were the first woter thinnable points produced commerciolly. The curd af milk is a natural emulsian and was alsa the binder used ta make cosein paints in the early 1920s.

Since the 1920s UV stobilisers ond onticoagulants have been develaped and new moreriols such as nitracellulase, phoenolic and alkyd resins, synthetic resins, pigments, extenders and modifiers have been used.

- Interiar Har, low-sheen, sotins ond semi-gloss finishes

Most interior wolls are finished in these praducts. They are easier to apply thon solvent-bosed ones, have fewer adaurs, faster drying times and brushes wash up in water.

They are based an a variety of resins such as Poly Vinyl Acetate (PVA), PVA-acrylic, acrylic and styrene-ocrylic.

In general:

- PVA's are the lowest cost paint; they have poor scrub resistonce but gaad brushing characteristics;
- PVA-acrylics are the mast ecanomicol generalpurpose type;
- Acrylics have better scrub resistance and better wet adhesion;
- Styrene-acrylics have better alkaline resistance.

As the gloss level of the paint increases it is necessary ta farmulate far a harder emulsian, which usually means a decrease in the level af the reinfarcing pigment-extender. This means that the dried paint film becames more thermoplastic (heat softening) and leads to greater dirt retention and sticking of window and doar frames.

Timber finishes and stains

- Orgonic solvent based cleor finishes

The main difference between the interior and exterior products is reloted to the need to resist the effects af ultroviolet light which degrades both the caating and the underlying timber. UV absarbers ore added at abaut $1.5 \cdot 2 \%$ ond the farmulation, porticularly the choice of driers, odjusted far their effects. These finishes are ovailoble in glass, satin and matt. The resin is usually alkyd, urethane oil, or two pack polyurethane. Moisture curing urethones are olso available.

The urethane ails affer excellent finishes for interior timber, they are nat as wear resistant as the two pock urethanes ond ore certainly superior to the olkyd-based materials.

Satin or mott finishes are usually made by dispersing fine silica inta the glass versions using high-speed mixing equipment. To mointoin viscasity it is not unusual to use a lawer salids resin.

It should be noted thot the opplication of clear gloss topcoats far waod is not recommended for exterior use.

This type of product will nat prevent the underlying wood from eventually turning grey. The oged grey colour in timber is lorgely caused by a combinatian of bacterial octian and UV light.

- Shelloc

Shellac is a spirit vornish consisting af gum shellac dissolved in olcohol. It is quick drying ond con be sandpapered easily.

Shellac is used principally for internal timber finishes where it is applied in numeraus thin layers and finely sanded between each coat (French polishing).

It is made fram the secretians of on insect laccifer locca, faund in large quantities in India. Shellac appears as an encrustatian an the twigs of certain trees.

- Organic solvent-based semi-transparent stains
inferior
Usually formulated for a 'wipe on-wipe off' application, or as a 'self finish' coating. The former will be overcoated with a clear topcaat. The pigmentatian is selected to enhance bath the grain and the texture of the timber. Mast are based an an alkyd resin.

exterior

As with the interior stains, the pigment is selected to enhance the timber. The pigments also tend to act as a UV absorber; hence these finishes do not suffer from the total film delamination problems of the clear finishes. There is a real compromise in the selection of the binder. The unmodified vegetable oils, whilst maintaining a good gloss level, are susceptible to mould grawth, and the alkyd resins tend to have inconstant gloss levels on rimber. Mast semi-transparent stains use a blend of both types of binders. Sometimes paraffin wax is added to give extra water resistance. This, however, slows down the drying, makes re-coating difficult and can contribute to pigment settling. Preservatives are often added to prevent mould growth an the resin (not the wood). These stains protect wood by screening out UV and regulating moisture movement. They are not in themselves wood preservatives.

- Opaque

These stains are heavily pigmented and show the texture of the wood, not the grain. They are described as a low viscosity, low solids version of flat paint and are formulated similarly.

- Water-based exterior opaque timber finishes

These are sometimes referred to as 'solid stains' or 'timber colour'. A variety of qualities is available.

The lower priced ones are usually based on vinyl acetate, and the more expensive on pure acrylic emulsions.

The acrylic ones are better for grain crack resistance and adhesion to the wood. However, the advantages may only become apparent on difficult timbers after some years of service.

Generally they are pigmented to give a limited range of colours, such as deep browns and muddy greens, based on axide pigments. Tannin pigment staining from the wood can be a problem with the white-based colour ranges and these should be formulated to overcome this problem.

Silicate/Minera/ caatings

The principle of silicate paints is their petrification with the substrate. The result is a solid mineral and insoluble compaund of paint and substrate (render, concrete, natural stone, etc.).

Owing to their crystalline nature silicate paints have high permeability. This ensures that moisture, which is present in the masonry, can freely pass out from the building structure. Because water does not stay between the paint layer and the substrate the substrate remains sound, and surface bursting and cracking is prevented.

A German patent of 1878 describes the basic concept of a parassium silicate binder and earth oxide colour pigments. ${ }^{2}$ Buildings in Europe, some of which were painted last century, are offered as examples of the durability of the product and its excellent light fastmess regarding colour. Other advantages are that the pure inarganic composition prevents fungi and algae growth and the caating does not burn.

These materials are well suited to surfaces such as walls where dampness is a problem, but obviously do not cure or hide rising damp.

Traditional inorganic paint finishes such as cement, lime, and sand combinations are now available commercially in a range of premixed colours. Other colours can usually be specially mixed. Quality varies between products and investigation of the compasition of the product is advised.

- Limewoshes

Limewoshes ore bosicolly sloked lime, tollow, pigment ond woter. The tollow reacts with some of the lime and performs o duol role of binder ond woter repellont. Owing to their olkoline noture the pigment colour ronge is limited

- Cementicous coatings

Cementicous coatings troditionolly were mode from white or light-coloured cement with pigments odded. Today these finishes ore commonly ovoiloble in premixed formulotions, ond their performonce hos been enhonced with the oddition of ingredients such os plosticisers ond surfoctonts.

Reference notes:

1 Theo Audel, Painting and Decorating Working Methods, International Association of Master Painters and Decorators, New York, 1922, p. 1

2 Keim Minerol Paints Established 1878 Germany. See Appendix

Sources for Information I.H. Hildebrand, The Solubility of Non - Electrolytes, Reinhold, New York

Surface Coatings - Oil and Colour Chemists Association - TAFE Technical Books.

Journal of Lining and Protective Coatings - vorious issues-Steel Structures Painting Council.

The Coating Inspector's Hand Book - Bechtel Corporotion Steel Structures, Painting Council USA

Jennifer Bell, Master Works, Random House (Formula for Lime Wash)

7 PAINT APPLICATION

Restraint with conservatian wark

When odopting on old building to o new function there is o temptotian to moke the building oppear new. However, one should ovoid stripping bock the building to give it o 'fresh' oppeoronce where this is not necessary for the preservotion of the fobric, or where such on oppearance is greatly of vorionce with whot wos there troditionolly.'

Simon Loffus writes:
Conservotion destroys the post. The vornished joinery, neotly pointed stone wolls ond well-insuloted roofs of sa mony of the houses which hove recently been restored in Puligny suggest the too-perfectly preserved glomour of o millionoiress of uncertoin oge, fresh from the expensive core of o plostic surgean. An occumulotion of smoll decrepitudes ond cosuol occretions is for me the ogreeoble evidence of chorocter ond history, infinitely preferoble to o facelift which cleons owoy every troce of life's vicissitudes. Scrubbing ond sondblosting con too easily obliterote oll sense of identity, of visuol continuity with the modest vignerons who built these hauses in the first ploce. ${ }^{2}$

With respect to ony conservotion octivity the question of when to stop is o universol one. The onswer is to do os much os necessary ond os little os possible.

In South Austrolio it is o question of whether we wont buildings to look brond new or whether o gentle weathered look is more in keeping with their chorocter.

In same instonces 'touching up' may be more oppropriote than totol repointing. Limewash in porticulor con be potched up very successfully in more expased oreas.

It is most likely in the cantext af this publicotion thot pointing aver existing pointed surfoces will be o considerotion. It is desiroble that repainting be carried out ot regulor intervols rother thon allowing the point ond the historic fobric to deteriorote.

Extensive repoir work to painted ond to deterioroted building fobric is time consuming, expensive ond moy be ovoided.

Ideolly, o lorge propartion of old pointwork would not require being removed prior to repointing. Where old point is firmly odhering to the surfoce, it provides o sotisfoctory ground for further paint opplicotion if the existing ond proposed point types ore compatible.

Core should be token to choose o suitoble point for the omount of weathering the surfoces moy experience with porticulor regord to the noture of the existing paintwork. Lock of bond between new moteriol ond ald work will inevitobly leod ta foults such os premoture flaking or peeling. Protection of the substrote is the prime considerotion.

Wear - cholking ond crocking

All point will weor out eventuolly ond in one of two woys; it will either cholk off or crock ond scole off.

Moderote cholking is considered preferoble to scoling, os it is possible to point over o cholking surfoce with minimum preparatory work. A surfoce upon which paint hos crocked ond scoled must be burned over with o blowtorch/heot gun ond the paint scroped off before repointing.

Note: When paint builds up to a thickness of opproximotely $1 / 16$ of on inch, or 16-30 loyers, one or more extro coots of point moy be enough to couse cooting foilure in the form of crocking ond peeling

If the fobric of the building is o physicolly frogile one, it is necessory ta employ more gentle ond loborious methods to prepore the damaged paint surface for repainting - coreful hond scroping ond sonding, far instonce. The methods of removing such domoged paint shauld be oppropriote for the different moteriols encauntered.

An American publicotion of 1922 offers the advice: A measure of worth of paint for average conditions is that:

1. It must caver 300 square feet or mare of goad surface with 2 caats, producing o unifarm, evenly calaured surface with no dork or thin ploces.
2. It must produce a paint film which is nat as hard and brittle as to crock and scale aff when the wood expands and contracts with temperature changes, nor so soft os ta chalk aff rapidly an exposure to the sun, nar wash off by the rain.
3. It must have an average life of three ta five years af pratection far the surface. And under favaurable canditians ta wear much longer.
4. It must be durable in calar, neither fading toa rapidly in the sun, nor chonging color-bleoching ar discalaring due ta chemical reactians.
The calar of the paint under the dust and dirt accumulatians ta be the colar judged.
5. It must leave the surface of the building in suitable canditian far repainting, withaut the necessity for burning and scraping aff of the ald paint. Only dusting off ond puttying shauld be needed.

Paint remaval

Durability of the point system ultimately relies on the quality of the preparation of the surfoce. All unsuitable material that may impair continuing preparation needs to be removed. The paint manufacturer's data sheet or application instruction should alwoys be consulted on this point.

Most paint data sheets will instruct the applicator to remove all loose and flaking material and ensure that surfaces are clean and free of all contamination. However, care should be taken because some methods of point removal, such as burning off or chemical stripping, make it difficult to retain that historical evidence which is in sound condition. Earlier layers of paint, varnishes, polishes and stains are examples of this importont evidence, and their retention can also serve to preserve the substrote. It is often preferable
to sand or gently scrape off old failed paint coatings to form a sound base for painting.

By avoiding unnecessary stripping, the possibility of damage to the substrate is limited and historical evidence is retained.

With any method of paint removol it is odvisoble to corry out o test on o small unobtrusive orea to make sure the results will be satisfactory ond thot no damage will be coused to the substrote.

Modern heat guns tend to remove all layers quickly, as does the proctice of 'stripping' in coustic baths. Damoge to timber is also a problem with this latter method. Wood fibres break down in joinery which is left too long in a coustic bath, and glued joints may also be damaged when subjected to caustic chemicals. Residual chemicals can also undesirobly affect the timber, most obviously in appearance.

Only if architectural detail is being obscured by many layers is removal, or partiol removal, necessary. Beware of paint removers which are either aggressively alkoline or ocidic as these may corrode golvanised iron - for exomple when removing paint from chimneys above galvonised roofs

Hazards in paint remaval

There ore two particular hazords that must be considered during restoration of older buildings asbestos ond lead.

Abstract

Asbestos

Asbestos fibres present a health risk. They are commonly found in the substrate, and any surfoce containing this product should be treated with care. Never sand, cut or otherwise disturb the asbestos-containing product without full personal safety protection and complete containment of the work area.

Asbestos products can not be dispased of in a conventional manner and specialist advice should be sought.

Lead

Since it is now recognized as a health hazard, lead is no longer permitted to be used in paint. The danger is in the possibility of ingesting the lead that then builds up in the body's system. As a consequence it is particularly dangerous for small children. Care should be taken when preparing old surfaces that are likely to have contained lead. Leaded paintwork can become a hazard when disturbed and it is best to avoid dry sanding, which can spread contaminated dust; or flame removal methods, which cause dangerous fumes.

Peeling paint falls off in flakes or chips but paint removed by mechanical means is pulverised into dust with particles small enough to be respirable. Airborne dust contaminated with micron-sized particles of lead poses significant threat to human health. ${ }^{3}$

During the removal of leaded paintwork it is important that the debris - that is, the dust, paint chips and spent adhesive - be contained and disposed of properly in order to protect the environment and the health of workers engaged in the process. ${ }^{\circ}$

Painting of external masonry

The wall surfaces of older buildings need to breathe that is, provide the opportunity for the moisture that may enter walls to escape into the atmosphere.

Traditional wall paints, being microporous, usually did not trap moisture and so deterioration of the painted surface as well as the substrate was minimised.

Unsuitable paints, when used on exterior masonry, often crack and peel and so promote damage to the very surface they are intended to protect.

Some masonry paints are impervious to the extent that water molecules are not able to pass through the membrane. Water vapour may pass through, but the salts carried in the water molecule cannot and these salts, left at the paint/substrate interface, can damage the substrate. Additionally, the pressure built up from the restricted breathing of such paint films can cause the paint to blister and breakdown, thereby exposing the masonry.

Although precautions should be taken to ensure a wall is sound and dry before painting - that is, without excessive moisture or carried salts - instances arise when this is not the case and the above problem can occur.

The following paints are listed in increasing order of resistance to moisture penetration:

Least resistance to moisture (permeable)

- Limewash
- Cement-based paint
- Silicate/mineral coating
- Distemper
- Acrylic
- Alkyd or oil paints (Enamelssuitable for timbers only)

Highest resistance to moisture (impermeable)

[^4]In the coses where mosonry wolls hove troditionolly been pointed, the paint system used should hove been - permeoble one such os limewosh or cement-bosed point.

Where on opplied coating is permeable to the extent thot both woter vopour ond soluble salts ore oble to poss through, the situotion is o heolthy one for the building structure in thot it keeps to o minimum moisture migrotion in the building fobric.

Keith Gehrig, in o repart on troditionol painting techniques, gives on occount of limewosh being used extensively on exterior wolls:

Stoiners were odded during the boiling process. These took the form of powders mixed with woter, usuolly oxides, for lime would bleach the cobur from mony pigments. Somples would continuolly be opplied to o surface ond ollowed to dry ond this process wos repeated, odding more stoiners until the desired colour wos obtoined. Colour cords ond farmuloe were not ovoibble ond this wos the only means of getting o suitoble colour for the client.

Oil, fot, dripping, butchers' brine, solts or milk were some of the binders thot were added to the lime during the boiling process. When butchers brine ond solts, such os seo woter, were mixed with the lime the dried lime hod the tendency to pick up moisture from the otmosphere, thus giving o patchy colour chonge to the lime finish.

Mony clients rother liked this effect ond therefore preferred this form of mixing. One person who very much fovoured this effect wos Professor Leslie Wilkinson, who founded the first school of Architecture of Sydney University.

He was a great user of lime wosh os on exterior woll finish and olwoys sought to hove on uneven colour pattern on the wolls. He loved to see trees growing close to the wolls so thot the stoins from the gum trees gove an aged and attroctive oppearonce to the building.'

Acrylic

Those who feel thot the stoined oppeoronce of more troditionol coatings is unocceptable fovour ocrylic point.

In the cose of o building being subjected to lorge omounts of grime, such os in o high troffic situotion, the use of ocrylic point ollows more reody cleaning.

The gloss levels of ocrylic points ore usuolly higher thon troditionol finishes. This foctor must be considered os it moy significontly olter the overoll oppearonce of the building

Proponents orgue thot ocrylic point, being microporous, ollows the woll to breathe by ollowing water vapour to pass through the membrone; that it gives o more uniform finish, ond losts longer.

However, it must be noted thot whilst woter vopour con permeate ocrylic point the corried solts in the woll usuolly con not and may be deposited on the substrote/point interfoce. This meons thot when the cooting does foil it is in the form of unsightly blistering ond o goad deol of repoir work is subsequently required (ond ot frequent intervols).

Domoge to the substrote by the restricted solts is olsa o very reol possibility.

Some building surfaces, such os wolls, hove only been pointed in more recent times. In such coses it moy be desiroble to remove the point, refinishing only those oreos which were originolly pointed. (Refer Point Removol.)

Removal of the modern point con domoge the woll to o certoin extent ond it moy be preferoble to ollow the paint to erode ond potch with limewosh in the meantime. ${ }^{8}$

Retention of ocrylic coatings is occeptoble in the obsence of ony rising domp and if the wall surfoce is sound. This odvice is most pertinent in situotions where the substrate is porticulorly frogile or historicolly impartont. It is eosy to inflict domoge on mortor joints ond pointing or on soft stone surfoces.

It is therefore recommended that a small sample area be treated and assessed first.

Inorganic paint finishes such as cement, lime, and sand combinations are now available commercially in a range of premixed colours. Whilst these formulations are based on traditional ingredients, in some instances the formulations have been altered to incorporate small amounts of other ingredients such as plasticisers and synthetic polymers in an attempt to improve performance.

Previously painted surfaces may need preparation before application, as limewash or cement-based coatings cannot be applied over layers of paint without prior treatment.

Internal wall finishes

Wallpapers were a common and important internal wall finish in older buildings. Exploration of this subject, however, is beyond the scope of this document.

The materials and pigments available today cannot always reproduce the effect of the original colour scheme. The extent that present products differ from earlier formulations varies. In some cases the resultant changes in appearance are subtle - gloss levels or sheen, for example. In other cases, where perhaps irregularities would have been a natural part of an old finish and the contemporary one offers a regular finish, the difference is more apparent.

WALLCO TONES Make COSY HOMES

Courtesy: Alan Feder, Solver Paints

It is possible, however, to achieve many of the effects of early finishes using those products which are still available as well as newer alternatives, but great care is required to ensure accurate results.

Whether reproducing the effects of an original scheme or repainting in a different manner, a basic understanding of the finishes generally encountered during the restoration/renovation pracess is necessary.

Kalsomine

Kalsamine is an example of a commonly encountered traditionol internal finish. It is a flat-finish size-bound distemper and is often locking in adhesion. It is also prone to discoloration. The binder (or body) of the coating is water-soluble ond will soften on exposure to moisture (such as steam or condensation). The pigments, which are not water soluble, then become easily dislodged.

A possible solution to the problem of discoloured distemper, according to a 1949 publication on paint finishes, was ta cover with a second 'stipple' coat of distemper. The accepted approach today is to remove the distemper by washing. (See Painting Problems and Solutions.)

If this process is carried out carefully it is passible to allow the effects of the distemper - that is, the 'stain' from the original pigments - to be retained as evidence of the original in the final finish. In this case any areas requiring repair are best expressed differently from the original remnants so as not to detract from them. New areas of plaster, for example, may be painted in a colour that is harmonious with the original finish but different from it. This method follows the general conservation principle of not detracting from the integrity of the original material.

Acrylic

If repainting with acrylic paint, a surface conditioner or binding coar that will penetrate the surface and aid in bonding any remaining loase material back to the plaster can be applied first. Alternatively, those interested in using authentic finishes may apply more distemper.

The finish of distemper was often streaky in appearance despite care with application. As well as the nature of the distemper material, porosity of the surface was a factor in this streakiness and very parous walls were sometimes prepared with a coating of size to counteract this problem. This should be considered if attempting to reproduce the effect of the original finishes either with distemper or o modern paint. ${ }{ }^{9}$

Painting of metal surfaces

Galvanised or zinc surfaces

Galvanising will often provide adequate protection for steel under normal conditions without the need for overcoating. Metallic zinc, depasited on the surface during the galvanising process, acts as a sacrificial coating an the steel corroding away slowly whilst protecting the steel substrate.

Once the galvonised surface has eroded or corroded away the underlying steel is exposed and will rapidly rust, and in the case of roofing sheets will perforate quickly.

Galvanising and zinc are not suitable for environments that are acidic (wineries for example) or strongly alkaline.

Under both these conditions the galvanising will corrode away at an accelerated rate. When galvanising is exposed to salt-laden air, such as in a marine enviranment, it will corrode to form a water insoluble zinc salt.

This is white in colour and is commonly referred to as white rust. If galvanising is overcoated directly with an acrylic paint, the 'white rust' will permeate through micro-pores in the paint. This is particularly noticeable with darker colours.

Flaking was a common paint failure on gutters and this in part wos because of a reaction between the zinc in the gutters and oil-based paint. It is now considered advisable to treat the galvanised steel with a water-based primer that may be followed by either a water-based or an oil-based system as desired.

A camman problem assaciated with gutters, which wauld nat have been traditianally encauntered by painters, is that af silicon-bosed seolants. Glues cantaining silican and carelessly used in the area af gutters have caused prablems with paint adhesian.

The silican-based sealers are difficult to remove, and far this reason their use shauld be avaided if passible.

Preparing new galvanised ar zinc surfaces for painting

New galvanising usually cantains same ail residues that must be washed aff priar ta painting. The new surface will be smoath and will need ta be raughened up. If passible, let the galvanising weather far six manths ar sa befare caating. By that time it should change in oppearance fram a bright zinc ta a dull finely etched surface.

Remave all dirt, grease and ails fram the surface, apply a caat af suitable galvanised iran primer. Fallaw by avercaating with a good quality tapcoat.

It is a camman natian that vinegar was used as a traditional cleaner. Unless the vinegar is very tharaughly washed aff, fungal grawth will be a prablem with this methad.

Do nat use an ail-based paint directly anta galvanised surfaces. The oil in the paint will react with the alkaline zinc ar zinc salts ond forms o soop that will cause failure af the coating. This process is known as 'sapanificatian'.

Treating ald and deteriarated galvanised or zinc-coated surfaces

Alwoys remove all traces of rust and corrosion. Care must be taken if using power tools to neither palish the underlying steel nar fald fresh steel aver rust packets. Needle guns are prane ta da the latter.

If near the sea all saluble salt must be washed aff the surface prior to painting

Where rust ar tatal breakdawn af the galvanised surface is nat a prablem it shauld be thoraughly cleaned and avercoated with o good quality paint system.

Where golvanised surfaces have badly carroded treat as detailed belaw.

Preparing steel surfaces

Steel is iran cantaining from 0.1% ta 1.5% carban. The properties af different steels vary accarding ta the omaunt of carban and the presence of ather metals.

Steel is praduced by madern technalogy and can be regarded as 'refined iron'. Wraught steel is now more likely than the old wraught iran. Wrought iran and cost iran are the result af different techniques, as the names suggest.

Although it is acknawledged that ariginal painted surfaces shauld be retained as an histarical recard, this may nat always be passible when pointing steelwork.

There is na paint product that will arrest carrasian on a steel surface ance it has cammenced to rust, unless the carrasian is anly light surface rust.

There ore a number af rust converters available an the market. They usually are based an either phaspharic ar tannic acids and wark by canverting rust (iran axide) ta passive materiol such as iran phasphate. They will nat wark an deeply seated rust ar layered rust, as anly the top surface is canverted.

Usually the most effective treatment far steel surfaces is ta abrasive blast clean the surface ta a standard of cleonliness described in the Australian Standard AS1627. Class $21 / 2 .{ }^{4}$ This process was commonly referred to as 'sond blasting'. However, as sand is nat, ar shauld nat be, used as a free-flawing abrasive medium, the term 'abrasive blast' is naw used.

After blost cleaning, o primer caat af inorganic ar epaxy zinc should be applied. It acts not unlike galvanising. The zinc should be of a quality as described in the Australian Standord AS2105 and
should be o Government Point Committee opproved product. (lt should be 75 m microns thick.)

This type of zinc primer should not be used close to the seafront. In thot cose o goad quolity epoxy zinc phosphote is on oppropriote substitute.

A suitoble tie coat such as on epoxy zinc phosphote should be opplied (30 microns thick), and the item finished in o topcoat of desired type ond colour.

It is imperotive to mointoin correct film thickness of oll times in accardance with the manufacturer's recommendotions to ensure optimum cooting perfarmonce ond protection.

Where such o procedure is not proctical, the next best alternative is the opplicotion of on 'epoxy mostic'. This product type is on epoxy cooting thot hos been modified to give o long wet time between the epoxy ond the surfoce, ollowing the paint to penetrote ond disploce any moisture and oxygen from the irregulorities in the steel.

Epoxy mostics ore engineered to wark on steel surfoces where obrosive blast cleaning is not possible ond the surface hos been mechanicolly cleaned. They ore two-part moteriols ond they do not work unless they ore opplied thickly to of leost 125 m (microns). They tend to chalk quite ropidly on exposure to sunlight but con be overcoated quite eosily to prevent chalking.

The next best olternotive is to use o good quality epoxy zinc phosphote os o primer.

The least effective primers ore single pock olkyd zinc phosphares, single pock alkyd zinc primers ond olkyd-bosed rust converters.

In ony cose, the better the surfoce preparation the more effective the primer.

Wrought iron is the purest commercial form of iron; iron nearly free from corbon. It is very tough ond fibrous ond con be welded.

Cost iron

Abrosive blosting, while not o desired procedure for most other building elements, is the most thorough woy of preporing cost iron for repointing.

Cost iron is o difficult moterial to prepare becouse it rusts readily when exposed to the otmosphere, ond the rust is hord to remave from the intricote form the iron usuolly tokes os orchitecturol detoil. It is therefore imperotive to prime the iron os soon os possible ofter grit blosting.

Epoxy zinc phosphote primer is considered the preferred option ond the cleoned iron is best given two coots

Single pack 'zinc-rich' primers ore not effective in this situotion.

Topcoots

Fallowing the thorough preporotion of surfaces os detailed above, on owner moy then select which type of topcoot is to be employed. Rother thon being o protective coat the finol coat con be more decorotive.

Pressed-metol ceilings

Oil point wos used troditionally in either gloss, sotin or flot finish. A zinc phosphote primer, fallowed by oil point, is recommended where rust is o problem.

Painting of timber

General and externol timber

Traditionally oil-bosed, or olkyd, paints were used on oll timberwork. The advantages were seen as:

- better penetrotion of the surfoce - they penetroted reasonobly well into mildly loase or powdery surfaces
- hord wearing (knock resistont) ond woshoble when dry
- ovoiloble in gloss, sotin or flot finishes
- goad flow resulting in fewer brush morks

The abviaus disadvantage is thot they ore slow in drying, requiring 24 to 48 hours before recooting.

Anather disadvantage is that the organic salvent. based point cantains valatile salvents. These evaporate inta the oir ond are cansidered ta be enviranmentally unfriendly.

Point manufacturers have been warking ta praduce products with lawer valatile arganic campaunds and it is expected that in the near future water based paints will daminate the market.

Oil-based paints ar enamels are still regarded as the best type af paint ta be used an maveable parts such as windaws ond doors. Acrylic paints, althaugh mare resistant ta discalauration ond crocking, have a tendency to stick moveable parts tagether. This is known as 'blacking'.

Cantemparary paint manufacturers praduce a vast range af acrylic paints far use an exteriar timberwark. These paints are easily warked because they ore woter soluble ond dry quickly. They alsa have the advontoge of being flexible, ond ore resistont ta weathering and ta the effects af UV rays that cause discalauratian.

They are well suited far fixed external jainery such as fascias, pasts ond trim.

In the case af acrylic paints being opplied over exist. ing ail-based paint, the surface shauld be carefully prepared. The surface needs ta be well sanded and a latex borrier undercoot opplied.

Enamels shauld never be applied aver a glass acrylic tapcaat.

Internol timber

The pointing af internal timber surfaces requires care in the selectian of the caating system.

Mast troditional finishes such as shelloc, beeswax and japan were not porticularly hard weoring or durable relotive to modern finishes, but nevertheless have distinct characteristics ond are desirable in instonces where authenticity is important.

Timber was rarely left unfinished. Good quolity timber wos frequently lacquered ar woxed, ond lesser timbers painted ta imitote higher-grade timbers, or simply painted. In this case enamel paint was used.

It has been comman practice ta use cleor polyurethane as a substitute for internal varnishes ond polishes and Keith Gehrig, in his research study (1985) an painting techniques, promotes the 'twa pack' catolyst type when he is discussing finishes for floors:

The early method af stoining the auter areas af flooring oround o central carpet squore wos corried aut with a combined stoin and varnish. It tended ta dry off quickly and its wearing quolities were anly reasonoble.

Today yau can nat anly nicely imitate this finish but alsa gain gaad weoring qualities in the process. Any good tronsporent waad stain is suitoble ond when dry shauld be avercaated with 2 coots af clear urethone. Remember thot the 'wwa-pat' catalyst type urethane gives far greater wear an o floor than will the single pat type.

Not everyane finds a palyurethone caating occeptable. Despite the wearing praperties of the product there is the sense of the timber being cooted in 'plastic'. Frequently naw, alternotives to palyurethone are being sought.

When preporing timber surfaces the subtleties af calour ond the patino which timber ocquires aver time should be preserved. Core in the removol af old cootings, be they varnish or wox, is required.

A sympathetic approach is to sand as little as passible. Scouring with coarse nylon pads is an effective way of removing accumulations of wax ond dirt.

In the case of floors, finishes that do not involve coating the timber with a synthetic film allow the dissipation of any moisture from underneath the floor, and also allow the pleasant feel of timber. Tung oil may be used in this situation and there are modern wax emulsions available that do not require frequent polishing.'

Note: It is not passible to use palyurethane over a japan finish as it will sheer the japan film from the underlying surface.

Paint Problems and Solutions

It is not envisaged within the scape of this publication to present a complete and detailed methodology for identifying and rectifying paint problems. The following is a synopsis of some common problems and solutions.

Bitty film occurs when small particles such as grit and fragments of bristle mar the paint finish. This is often because of a lack of care in surface preparation, and/or lack of attention to cleanliness of equipment. Occasionally defects are faund in paint manufacture.

Allow the surface to harden and rub down carefully with fine sandpaper. Recoat using clean equipment and 'bit free' paint.

Bleeding is staining or discolouration of the paint. There are many different reasons for this problem. The main ones are analine-based timber stains, bituminous paint, creasotes and resinous or high tannin content in timber.

Initially determine if the stain is soluble in either water or solvent. Water-soluble stoins need a solvent-based sealer; solvent soluble ones need a woter-bosed sealer. Most paint manufactures produce both types. Bituminous moteriols, including creasote, must not be sealed before they hove oged for at least one year. In fact, it may never be possible to paint satisfactorily over thick soft bituminous coating without bleeding
or some pigment migration. Where metallic inks in woll coverings or nicotine staining are the cause of bleeding, remove them by washing down thoroughly with detergent solution ond then seal (with o solvent-based sealer).

Sometimes a number of coals of shellac is the only way to overcome staining. Be aware that the shellac is quite a fragile coating and care must be taken in overcoating it.

Blistering is a localised loss of adhesion between coats and/or substrate. With age, the paint film becomes more rigid and blistering can lead to Flaking. The original paint has lost adhesion to the substrate allowing air to pass freely through the weathered paint.

Blistering is frequently caused by moisture beneoth the paint and is almost inevitable on expased timber if the moisture content of woad exceeds 14%.

In timbers facing north, the combination of solar heat and resin in the timber can cause blisters even if there is no moisture. Surfaces that appear satisfactory may blister soan after they ore recoated.

When new paint is applied it effectively seals the surface. The air under the paint expands when heated by the sun, and blisters appear. It is particularly likely to occur when recoating with a dark-coloured tapcoat.

Strip the blistered paint and if moisture is the problem allow the surface to $d r y$ out before repainting.

With isolated blisters, remove them and fill the resulting depression, sond smooth and recoat overoll.

To check the integrity of the paint o X cut odhesion test is strongly recommended. Cut a X in the old paint with a razor. Press odhesive tape on firmly, then tear off. If the paint has poor adhesion to the surface, it will be ripped off with the tape, in which cose the old paint must be removed by sonding or burning off.

Bodying/thickening of point is normally caused by loss af salvent, usually because of the lid af the tin not being praperly closed. It can also be caused by non-campatible thinners as when mixing with ather types of paint.

Always clean the lip of paint tins tharaughly, seat the lid firmly and store upside down.

Where an unadulterated paint has fattened very slightly, it can be reconditioned by adding a small amount of the apprapriate thinner.

If the paint has become very thick, or where there is a mixture of two or more materials, discard it.

Cholking takes the form af a pawdery coating on the surface of the paint, owing ta a breakdown of the binder in the paint film. The rate of chalking depends on the amount af surlight falling on the paint surface. North-facing walls are more prone to chalking than south facing or shaded walls.

Clean aff chalk by washing or wiping.

Cissing occurs when freshly applied paint recedes from the surface, leaving small craters ar bare areas and is usually caused by grease, oil, wax polish or silicones.

Cissing may also occur when water-based paints are applied aver new gloss, semi-glass oil-based caatings or primers.

Clean the surface tharaughly befare painting and sand oil-based caatings before applying water-based materials.

If cissing has already occurred, allaw the paint to harden before rubbing dawn and recaating.

Cheesy films occur when a dry paint film is still saft and mechanically weak. Causes range from over-thick application, mixing different types af paint or the presence af ail, wax, grease etc.

There is anly ane salution to the problem: remove the coating and start again.

Crocking (crozing, checking) indicates a problem within the coating system, usually because the whole system is not sufficiently flexible. Typical causes are ageing and embrittlement of alkyd paints, movement of the surface (expansion and contraction) and the application of fast-drying coatings over sotter anes.

Remove cracked and flaking paint by scraping and sanding and recoat with the appropriate topcoat.

Discolorotion may be caused by armospheric pollutants (such as sulphur, which will blacken some paints), as well as by some types of mauld or fungus. Yellowing of paints containing drying oils can be because of the exclusian of daylight, whilst some pigments can fade in bright sunlight.

Remove sulphide stains by washing with peroxide solution.

Remove mould by washing with bleach solution.

Reduce yellowing by placing article in direct sunlight, or overcoat with a water-borne acrylic.

Drying slowly. There are many causes for this, including poar ventilatian, low temperature, excessive humidity, ar an excess of grease, oil, wax polish ar similar contaminants.

Often the problem is in nat allowing sufficient time for the previous caat to dry.

Try ta improve the atmaspheric conditians, but even then coating appearance may be impaired and another coat needed.

When surface cantaminatian is the problem, it is narmally essential to remave the affected material, clean the surface and repaint.

Efflorescence usually appears on new brick, plaster or cement surfaces as they dry out and can 'grow' an old surfaces where maisture has penetrated.

Efflorescence shaws up as a white crystalline or amarphaus depasit.

Efflarescence indicates that moisture has passed (or is continuing to pass) out fram the surface.

To overcome the efflorescence, wosh down with colcium chloride solution. All deposits must be removed.

If there is no reoccurrence wittin 14 doys, it is probably sofe to paint.

If efflorescence occurs ogoin try leoving the surface for o further periad to dry out.

Recurrence on old surfaces indicotes thot the source of moisture remoins ond must be erodicoted.

Don't opply point while efflorescence persists.

When o point film hos been disrupted by efflorescence, the whole oreo must be stripped, wiped down ond left until the efflorescence stops before repainting.

Loss of gloss. When this happens prematurely it may be because of paint having been applied in unsuitable weather canditians (such as frost, fog or high humidity; the presence of wax or grease; or that the paint was applied over-porous surface or undercoat. Over-thinning ar thinning with unsuitable solvents are other causes.

To ovoid the problem of loss of gloss, ovoid these situatians.

Where loss of gloss hos occurred on o relotively new point, rub down ond recoat.

Kolsomine was a praprietary trade name that became a generic term for this type of distemper.

Kalsomine was popular owing to its ease of use and low cost. It gave goad results, and was available at a time when mast ather paints required a goad deal of skill in mixing and application. Hence it was a product that the home handyman could use easily. The disadvantage of this type of coating is that during its life span it will shed the pigment when touched.

Sametimes sizing was carried out on aged and new porous plaster surfaces befare the applicatian of kalsamine. The sizing is similar to that used for wallpaper. The application of kalsomine was able to commence once a dry film had formed.

Although kalsamine was a goad product for the time, new technalagy was responsible for its demise. The advent of latex, emulsion and PVA-type wall coatings with superior benefits such as wiping, removing stains from wall surfaces, a much longer life spon for the caating and suitability for use in moist areas meant the popularity of kalsamine declined.

Kalsomine has little to no cohesive strength; subsequently the new coatings quickly highlighted adhesion problems.

The only way to repaint a surface successfully was to completely remove the kalsomine before any other coat could be applied over the top.

Washing off kalsomine from plaster surfaces, such as ceilings and walls, is a messy affair, as liberal quantities of clean water are required to effectively clean the surface.

The fallowing method is used to remave kalsomine.

The 'wetting-in' process is very importont. The whale surfoce should be thoroughly wetted with worm woter. This process needs to be repeoted severol times occording to the thickness of the caating, with time ollowed between each opplicotion far the woter to soak well in. Warm water must be used to soften the binder in the kolsomine.

The next step is ta wark up the saffened kalsamine and remove if with the oid of o piece of dompened absarbent moteriol. A stripping knife is olso a useful and handy toal

It is necessory to work in smoll oreos, covering o little surface at a time and remave as much of the old watercalour os possible.

Use a towelling mop to collect the sooked kalsomine in its folds. It should be washed out from time to time in a bucket of clean water. It is essential to keep the water clean so the mop/or brushes will remain clean.

Repeat the woshing process in small sections all over the surface until the job has been completed.

A second wosh of the entire surface area with cleon water will remove any smears left on the surface.

To check the level of surface cleanliness wipe the surface with your honds ond look for ony milky residue. Repeat washing if required until satisfactory cleanliness is achieved.

Some paint manufactures market a slow drying long oil alkyd-based cooting with deep penetroting qualifies os o kolsomine sealer. This product takes up to 72 hours to dry. It binds the surfoce ond provides a sound substrote for subsequent paint coats.

Lifting (picking up, working up) happens when one coot is softened or disturbed by the application of another, especially by brush. With conventional decorative paints, lifting is usuolly because of application before previous coat is thoroughly dry.

Cootings or lacquers, such as those based on chlorinated rubber or nitrocellulose, tend to soften when recoated with similar materials and, for this reason, are best applied by sproy to lorge oreas.

Cootings of this type may also soften oil based paints, even when these ore thoroughly aged.

A small-scale test to check the resistance of existing cooting is odvisoble.

Mould growth. Mould needs moisture for growth ond is most likely to occur in high humidity, poorly ventilated areas or on surfaces with high moisture cantent, such as bathrooms, laundries etc.

Remediol treotment should include reducing the humidity or moisture content wherever possible ond opplying o suitoble fungicide solution to kill the growth.

Repairing with paint to which a suitable fungicidal additive con be incorporated is recommended.

Peeling. This phenomenon is similar to blistering.

Moisture beneath the paint film is o frequent cause of flaking and peeling, as is the applicotion of paint to powdery or friable surfaces.

Other causes ore oil, grease, ond polish residues on the surfoce; excessive movement of the surface (such as joints in woadwork), resulting in cracking and ultimotely flaking and peeling.

Often, small areas of flaking can be dealt with by removing the loose material bock to a firm edge, spot priming and recoating.

Where flaking is extensive or the overoll odhesion of the system is doubfful, the surfoce should be stripped completely before repointing.

Saponification is the result of oil-based paint coming into contact with alkalis in the presence of moisture. It can occur with oil-bosed paints applied over galvanised surfoces. In a mild form the paint softens and may discolour. As a worst cose saponification will completely destroy the coating.

Avoid contact of oil bosed paints with moist/damp alkolis, cement, lime, plaster, osbestos, golvanised or zinc coated surfaces and similor materials.

If point is likely to come in contact with this type of surfoce use water borne ocrylics.

When soponification has occurred, the surface must be stripped, washed and allowed to dry out before repointing.

A suitable primer or tie coot moy be used os a barrier coot between the surface ond the oillbosed paint.

Settling occurs in paint naturolly when stored for long periods of time. The solid constituents, principolly the pigments, tend to settle out.

To reincorporate the pigments in small quantities of paint, stir with a broad bladed stirrer, using a liffing and beating action.

For large quantities, a mechanical agitator is preferable.

Ta avoid the problem, invert the containers at regular intervals during storage.

Tronsparency (paar opacity) arises where the underlying paint or the original coat is showing thraugh the finish coat. Causes can be from over-spreading the paint or toa few coats.

Consider using more than the normal number of coats when making a marked colour change.

Always use an undercoat recammended by the manufacturers of the topcoat.

Wrinkling of the outer surface of a paint coating occurs most frequently with gloss finishes on exterior work in conditions conducive to the rapid formation of a surface skin.

Wrinkling is likely to be most severe where paint has been heavily applied.

Several days or even weeks (depending on time of year) are required to allow the paint to dry and harden before it can be rubbed down (with fine sandpoper) and recoated.

If early reinstatement is required, it may be possible ta remove the coating by scraping aff most of the defective material and remove the residue with mineral furpentine, leaving the undercoat unaffected. Another coat of finish can be applied.

Yellowing in oil-based paints is caused where direct sunlight is limited or excluded, and in atmospheres containing small amaunts of ammonia or sulphurous compounds. These compounds may be present as combustion products, especially in kitchens and adjacent rooms.

Reinstatement is only possible by repainting, although items such as doars can be placed in direct sunlight for short fimes to reduce yellow.

To help prevent recurrence of the problem, improve ventilatian and increase direct sunlight.

Yellowing is mare obvious with white point. A pastel colour could be considered instead.

Enamels drying in the presence of water-based acrylic paint materials may also be affected owing to the emission of ammonia during the drying phase of the acrylic. Where possible apply water-based paints at least two days before applying enamels. Ensure good ventilation.

Apparent yellowing may be caused by 'nicotine staining', which is very difficult to remove completely and residues may discalour new paint. To prevent such discolouratian, apply a coat of suitable stain sealer after washing the surface with detergent solution.

Where it is possible, repainting with water-based paint will reduce the yellowing tendency.

Pictorial identification of paint problems

Saponification and Checking
a total paint film breakdown caused by
a combination of saponification and
incompatible paint coatings. This effect
may take several years to show up.

Cracking

a paint film will not correct, or hide defects in the substrate, in the case, dried out glazing putty.

Substrate Defects
two exomples of poor preparation
of the substrate before re-painting

Painting of Older Buildings

Delamination

the paint film has lost its flexibility and
become brittle

Moisture Entrapment
caused by non-permeable paint
applied on wall that contained
moisture

Rust
severe laminate rusting of steel gote with
significant metal loss.

Rust Staining
dive to un-treated bold head.

Saponification
a galvanised gutter has been painted with an alkyd oil bosed paint: A soop hos
formed at the interfoce between the paint
and the golvanising causing delamination.

Mould and Staining
caused by tree foliage resting on roof

Blistering

in this instance caused by moisture trapped under the paint film. The timber was probably
damp when coated or water is entering the
timber from a leak in the roof sheeting

Blistering

in this instance the timber was damp when
painted.

Effloresence

the white crystolline deposits indicate that salt containing moisture has or is continuing to pass through the paint film

Cracking, Grazing, Checking
caused by application of a fast drying
coating over a solfer one

Reference notes:

1. Informotion Sheet no.7.
2. Simon Loffus, Puligny-Montrochet, Journal of a Villoge in Burgundy, Ebury Rondom House, London, 1992, p.113.
3. Internotionol Associotion of Moster Pointers ond Decorotors, 1922, p. 64
4. Koy D. Weeks ond David W. Look, Exterior Point Problems on Historic Woodwork (1O Preservotions Briefs), Technicol Preservotion Services, Preservotion Assistonce Division, National Park Service, US Department of the Interior, p. 11 .
5. Adelo Wright, Removing Paint From Old Buildings, Society for the Prolection of Ancient Buildings, U.K. 1986, informotion Sheet no. 5.
6. Leod Alert, Commonwealth Environment Protection Agency.
7. Keith Gehrig, A Guide to Troditionol Pointing Techniques, Reseorch Study no.9, The Heritoge Council of NSW, 19B5, p.5.
B. Wright, op. cit.
8. See 'A Brief History of Point' for other decorotive finishes such os stencilling, stippling etc.
9. Gehrig, op. cit., p. 66
10. Stote Heritage Newsletter no. 11 July 1997.

Photos: Mark Weston, INCOSPEC

8 QUALITY AND STANDARDS

The Australian Standards Assaciatian

The Austrolion Stondords Associotion hos ovoiloble two relevont publicotions:

- Austrolion Stondord AS2311: The Pointing of Buildings ond
- AS2312: Guide to the Protection of Iron and Steel against Exteriar Atmospheric Corrosion.

These two stondords give o great deol of informotion on ospects of pointing. They ore recommended reading ond should be cited in the Scope of Works (see below) for ony project. The Australion Stondard for Point Colours is AS 2700-1996 (see Recording in Colour Scheme Selection section).

Engaging a tradesperson

In selecting o trodesperson one should consider the following points:

Licences and insurance

Any trodesperson must hold o relevont ond current builder's licence for the porticulor trode in which he or she is engoged. They must olso have appropriale occident insurance cover in order to protect agoinst occidents to property ond to themselves. Proof of these must be obtoined from o trodesperson prior to commencement of project. Foilure to do this con render the homeawner lioble for litigation costs in the case of injury or damage.

Professional associations

Preference should be given to a tradesperson who is a member of the Moster Pointers' Association who mointoin o full time secretoriot. The ossociotion con provide a list of members, olthough no specific recommendotions ore mode.

It is importont that prior to the colling of quototions for o job, the scope or extent of work be fully defined. This meons listing oll items to be pointed such as eaves, floshings, windows, doors, foscios, wolls etc. The colour ond type of finish required should olso be noted. Expert detoiled advice should be sought os to the best types of paint ond methods of opplication. Paint manufacturers, orchitects, designers and engineers may be consulted.

The scope of works should be reviewed with the controctor before finolising an ogreement.

Interpretation of quototions

Ideally at least three quotations should be obtoined ond it is not uncommon to find the prices vory considerobly. Extreme voriations in quototions should be viewed cautiously.

It is prudent to check oll aspects of the scope of works and all details of the tendered quotation.

A consultant often prepores the specificotion. It moy, however, be prepored by the owner, who must then toke responsibility.

Do it yaurself

Should o homeowner elect to undertoke the project personally, advice os to the methodology ond requirements is ovoilable from most mojor point supply companies and retail outlets.

Only premium products should be used.

Quality af paint

Anyone visiting a paint supply shop is presented with a bewildering array of products at often wildly varying prices. Two key indicotors of the quolity of the paint, apart from buying o known brond, are Volume Solids and GPC Approval.

Valume salids

This infarmatian is an the praduct data sheet that shauld be available at paint af purchase. It is usually expressed as a percentage weight far weight ($\% \mathrm{w} / \mathrm{w}$).

Liquid paint cantains salvent and salid material. The salvent evaparates leaving the paint film an the surface. With a little mathematics it is passible ta figure aut that if a particular paint has $50 \% \mathrm{w} / \mathrm{w}$ valume salids and if it is applied at 50 m wet it will dry ta 25 m thick (DFT). Therefare 1 litre (which is the same valume as 100 cc) af the same paint (at 50 m wet) will caver 20 square metres. (Da nat farget ta allaw far wastage.)

This is nat the sale indicatar, but allaws a price/ caverage area camparison.

Government Paint Cammittee (GPC)

The Gavernment Paint Cammittee is a bady camprising bath gavernment and paint campanies which establishes a bench mark quality for each type af paint. Ta receive a GPC classification the paint praduct must underga field perfarmance testing and have the manufacturing process manitared. Hawever, it can take up ta five years before an appraval is granted, and new technalagy is therefore nat classified far some time after release.

GPC appraval is a benchmark anly. It guarantees a certain minimum standard but doesn't indicate a maximum standard. There are praducts that well exceed the GPC classificatians far which they are appraved.

Paint that is GPC appraved is generally marked an the cantainer, and is certainly highlighted an the data sheet.

9 GLOSSARY OF TERMS

Abrasian resistonce

Resistant to being worn away by friction.

Acid etch

Using an acid to roughen o surface.

Acrylic Resin

A synthetic resin that has excellent weather resistance and hardness.

Adhesion

The bond between the coating ond underlying material.

Air Dried

Coatings that normolly reach desired hardness without a catolyst or external heat; thot is, dry by oxidation or solvent evoporotion.

Alkali

A term applied to caustic chemicals that contain hydroxyl groups. pH greater than 7.4. See pH.

Alkyd

A synthetic coating material used in many types of decorative and industrial enamels. Properties vary widely.

Alligatoring

Pronounced wide cracking over the entire surfoce of a coating. Resembles alligotor skin.

Anti-Settling Agent

An additive used to minimise settling of pigments in paint during storage.

Anti-Skinning Agent

An additive used to prevent formation of on insoluble surface layer on paints that contoin drying oils during storage.

Aromatic Hydrocarbon

A volatile solvent such as benzene, toluene, xylene. Usually extrocted from coal tar or petroleum. Term refers to chemical structure based on closed rings of carbon atoms rather than smell. See Solvent.

Barrier Coat

A coat used to isolate successive coats to prevent adverse chemical or physical interaction.

Binder

The resin portion of coatings the function of which is to hold pigments together, and to provide o cohesive film.

Bituminaus Paint

A black or dork-coloured point using coal tar or bitumen as the binder.

Blast Cleaning

Surface preparotion using propelled abrasives.

Bleeding

The diffusion of coloured matter through a cooting from the underlying surface; also refers to the discolourotion orising from such diffusion.

Blistering

Regions of isolated detachment of one or more coats resulting in rounded protuberances on the surface.

Blooming ar Blushing

A milky colour which forms in clear finishes owing to atmospheric moisture.

Body

Used to indicate the consistency of the point.
Catolyst
A substonce thot starts or increases the role of a chemicol reaction. In coatings, it is the component added to o synthetic resin to develop proper curing and chemical resistance.

Chalking

A form of paint degrodation which results in loase pigment on the surfoce.

Checking

Breoks in the coating which do nol penelrate to the underlying surface. See Cracking.

Cissing

Smoll, uncoated oreas on o surface owing to lack of welting by the paint.

Coal Tar

A black, resinous moteriol derived from coal. Previously used as an additive to epoxy resins. NOTE Coal Tar is classified as o class Al corcinogen.

Carrasian

The degradation of a materiol (usuolly o metal) owing to reaction with the environment. Alternatively, loss of metol by electrochemical processes.

Cracking

Breaks in the coating which penetrate to the underlying surfoce. See Checking.

Craters

Smoll circular domes in a dried film with a thin spat in the centre. They can be minute or up to 5 mm in diameter. See Fish Eyes.
Crozing
The formation of fine crisscross cracks on the surface of the coating film.
Crocodiling
See Alligoloring.

Cross-linking

The formotion of o chemicol link between polymer molecules to toughen o cooting ond moke it insoluble. Cured Film
A hordened film.
Curing Agent
See Cotolyst.

Curtains

Long, horizontol runs in o film thot occur on verticol surfoces.

Degrease

Removol of grease, petroleum products, oil etc., generolly by the use of detergents or solvents such os trichlorethylene or methyl ethyl ketone.

Dado

Lower section of on internol woll from the floar (or skirting) to woist height.

Delamination

Seporotion between coots of point or between point ond the substrote becouse of very poar odhesion. DFT
Dry film thickness; usuolly expressed os microns, one thousondth of o millimeter.

Dispersion

The suspension of tiny porticles in o liquid medium.

Distemper

The term distempering refers to ony method of opplying colours thot ore mixed with o glutinous substonce soluble in woter, such os glue, gum, cosein (milk powder) or white of egg.
Drier
A compound odded to o point to occelerote drying; for exomple Terebin.

Drying Oil

A fotty oil copoble of conversion from o liquid to o solid by slow reoction with oxygen in the oir. The drying thus refers to o chonge in physicol stote rother thon evoporotion of solvent. Points mode from drying oils horden in this monner.

Emulsian

See Lotex.

Enamel

A type of oil-bose point with high gloss.
Epoxy
A cotolysed epoxy formulation thot cures by oddition of o cotolyst, generolly ot roam temperoture.
Etch or Etching
Roughening of the surfoce by treatment with ocid.

Etch Primer

A primer usuolly contoining phosphoric ocid which etches the metol surfoce to improve keying of subsequent coats.

Extender

An inorgonic powder odded with pigments to reduce gloss, improve odhesion or reduce cost.

Fabric

The structure or physicol mokeup of the building.
film
A loyer of cooting or point. A wet film is one thot hos just been opplied.

Fish Eyes

The formotion of holes or depressions in o cooting film. Also known os crotering.

Flat Finish

A term usuolly used for decorotive points describing o dull, non-reflective finish.

Flooding

Pigment thot floots to the surfoce of o film, usuolly in streoks.

Galvanising

Coating of steel with molten metollic zinc to give corrosion protection.
GPC
Government Point Committee.

Hardener

A cross-linking ogent used to cure o resin. See Cotolyst.

Hiding Power

See Opocity.

Holiday

Any discontinuity or bore spot in o pointed oreo.

Hydrocarbon

A chemicol compound contoining corbon ond hydrogen otoms. Commonly refers to extrocts from petroleum such os petrol, white spirit, etc.

Inhibitive Pigment

A pigment odded to cootings copoble of retording corrosion of the metol by reacting with the metol surfoce. Exomples ore zinc chromote ond zinc phosphote.
intercoat
Boundory between coats.

Iran Oxide (Rust)

Moteriol forming on reoction between oxygen ond iron. Examples ore mill scole fformed ot high temperature) ond rust (strictly o reaction between iron, oxygen ond woter). Very pure iron oxide is used os o pigment.

Lacquer

A type of cooting which dries solely by solvent evoporotion.

Lacquer Thinner

Used to describe such solvents os ethyl olcohol, ethyl ocetote ond toluene.

Latex

A milk-like fluid mode up of microscopic porticles of rubber or synthetic resin suspended in woter. The suspension is stoble.

Laying Off

Finol light strokes of o brush on o point film to even ond smooth the cooting os much os possible.

Leafing Pigment

Floke-like pigment particles that orientote themselves on the surfoce to form o continuous sheet. Exomples ore oluminium floke ond micoceous iron oxides.

Lime

The oxide of colcium, a white coustic solid (quicklime or unsloked lime).
Long Oil Alkyd
An alkyd resin containing more thon 60% of oil os o modifying ogent.

Mastic

A term used to describe a heory-bodied cooting, usuolly slow drying.

Matt Finish

A dull finish olso known os o flot finish.

Medium

The totol sum of the constituents of the liquid phose of the point.

MEK

A solvent, methyl ethyl keytone.

Metalising or Metal Spray

A method of opplying otomised molten metol to o surfoce; for exomple, zinc, oluminium.

Micron

A metric unit of distonce olso known os micrometre. One millionth of o metre written os m . Point film thickness is measured in microns. There ore obout 25,000 microns to the inch.

Mill Scale

A loyer of iron oxide formed on the surfoce of steel plotes during hot rolling. May ronge from oround 50 microns to severol millimerres thick.

Mud Cracking

A phenomenon thot occurs to point films os they dry, oppearing like mud drying in hot weother. The crocks generolly oppear in o five-sided shope.

Neutral

A term used to describe on environment thot is neither ocid nor olkoline; for example pure woter.
A neutrol colour is on indeterminote colour, or one hoving no porticulor hue.

Nan-Ferrous

A term used to designote metals ond olloys thot do not contoin iron; for exomple bross, aluminium, mognesium.
Oil Paint
A point thot contoins drying oil, oil vornish or oil-modifed resin os the bosic vehicle ingredient. The common (but technicolly incorrect) definition is ony point soluble in orgonic solvents.

Opocity

The obility of a point to completely obliterote underlying substrote.

Orange Peel

Dimpled oppearonce of o coated surfoce resembling the skin of an oronge owing to o lock of flow out of the wet point film.

Organic

Chemicols bosed on corbon, os contrasted to minerol chemicol compounds. Corbohydrotes, synthetic resins, solvents ond a lorge voriety of chemicols ore orgonic.

Osmotic Blistering

The blistering of o point film owing to solt deposits beneoth the coating. Wet blisters filled with solt solution ore formed.

Peeling

Poar odhesion resulting in lifting of o coating
pH
A volue indicoting the ocidity or alkolinity of O solution, ond as a measure of the concentrotion of hydrogen ions. Pure woter hos a pH volue of obout 7 ond is neutrol. Acids ronge down to pH 0 strongly ocidic ond olkalis ronge from pH 7 up to 14 .

Phosphating

The use of phosphoric ocid treotment of steel to prevent corrosion.

Pickling

The chemical removal of rust and mill scale from iron and steel, usually with an acid.

Pigment

An insoluble, finely divided material whose function is to provide obscuring value, colour and corrosion protection.

Pinholes

The formation of tiny, circular hales in a paint film.

Pitting

The result of local corrosive attack forming holes in a metal surface. May be described as shallow or deep, small or large in diameter, and quantity per unit area.

Plasticiser

An organic liquid added to coatings and sheet lining compositions to improve flexibility.

Polymer

A substance composed of large molecules that have been formed by the union af a graup of simple malecules (monomers).

Pot life

The interval after the mixing of two component coatings during which the liquid remains usable before gelling.

Primer

The first coat applied to a surface. Primers are formulated to have good bonding and wetting characteristics. They may contain inhibitive pigments.

Resin

Any group of organic, plastic-like materials that can be moulded ar dissolved. Can be natural or synthetic.

Retarder

A liquid thinner added to a coating used to slow the drying rate and improve flow-out.

Runs

Sagging and curtaining caused by improper thinning or poar application.

Rust

The result of the corrosion of iron or steel to form visible iron oxide. May be described in order of severity-scattered pinpoints, blush ar powdery, freckled or streaked, light scale, paper thin, flaked, medium scale (layers up to 3 mm thick), heavy scale (layers over 3 mm thick).

Saponificatian

A reaction between a binder and alkali resulting in a soap-like material. Examples are found in oil-based coating applied over a galvanised substrate.

Satin Finish

A descriptive term generally in reference to decorative paints, usually intermediate between semi-gloss and flat.

Setting

Separation of pigments and other dense materials in a paint to the bottom of the container.

Shellac

Shellac is a unique resin produced as an excretion by a coccid insect in India and Thailand. The dried excretion is collected, crushed and washed. It is then melted and dried in sheets that are broken up and exported far use as an alcohol-soluble coating resin. The resin has a variety of uses; ranging from sealers and isolating lacquers far wood and water-stained plaster. For many years the resin was used in a furniture finish process known as French polishing.

Shop Primer

A fast-drying, abrasion-resistant primer applied in the workshop to fabricated steel units.

Short Oil Alkyd

An alkyd resin containing less than 40% oil in solids.

Silicone Resin

A resin farmulated into coatings bosed on polymers containing silican.

Skinning

The formation of a tough skin-like covering on the paint surface on expasure to air.

Slake

Ta disintegrate or treat (lime) with water or moist air, causing it to change into calcium hydroxide (slaked lime).

Salvent

A liquid that is used in a coating to dissolve or disperse the film-forming components. Evaporates during drying.

Substrate

The bose surface to which a coating is to be applied

Surfacer

A pigmented composition for filling depressions to obtain a smoath, uniform finish before applying finish coats, usually applied over a primer.

Synthetic

Manufactured as opposed to naturally occurring.

System (Coating)

A coating consisting of successive applications of primer, intermediate or undercoats and finish or sealing coats.

Thermoplostic Resin

A resin which becomes soff on opplicotion of heot ond becomes hord ogoin on cooling.

Thermosetting Resin

A resin hoving the property of curing so becoming insoluble ond heot resistont upon opplicotion of heot. Thinner
A volotile liquid odded to o cooting to odjust viscosity. Moy be the solvent, the dilutent or a mixture of both.

Tie Coat

A coot opplied to o previous film to improve odhesion of subsequent coots.

Total Volume Solids

The totol solid film-forming portion of the pockoge of point expressed os o per cent by volume.

Tung Oil

Tung oil, olso known os Chino Wood oil, is obtoined from the kernels of nuts from the lung tree. It dries ropidly ond when used olone produces flot, frosted ond wrinkled films. The oil is more usuolly used with phenolic resins or rosin esters in oleoresinous vornishes. Recently, the oil hos been successfully used in cold combinotions with certoin phenolic resins to give low VOC \{volotile orgonic compound\} coating systems for the protection of steel.

Underculting

The spreod of corrosion beneoth o cooting from - breok in the film or the edge.

Varnish

A non-pigmented point which dries to o hord, tronsporent film.

Vehicle

See Medium.

Vinyl Resin

A synthetic resin which hos o wide ronge of chemicol resistonce. Con be formuloted to produce odhesives, sheets, textiles, cootings, etc.

Viscosity

The consistency, or eose-of-flow, of o liquid point composition. A high viscosity fluid is thick ond flows with difficulty, o low viscosity fluid flows readily. Often expressed in units of seconds os the time required for - given volume to flow through o specific-sized orifice.

VOC

Volotile Orgonic Compounds. The term used to describe the orgonic solvents thot evoporote into the oir during point opplicotion. The emission of VOCs is controlled, ond in some countries licensed by the Environment Protection Authority.

Void

A covity in the point film, which moy or moy not be visible of the surfoce of the coating.

Volotile

The solvent component of the vehicle thot evoporotes on curing. The non-volotile components ore known os the film formers.

Weathering

The olterotion of o cooting owing to constituents in the otmosphere.

Wet Film

Describes the cooting ofter opplicotion but before the solvent evoporotes. The solvent content in the wet film will constontly decreose becouse of evoporotion.

White Rust

The white corrosion products on o zinc or golvonised surfoce.
Whiting
A pure white cholk (colcium corbonote) which hos been ground ond woshed.

Wrinkling

The development of wrinkles in o point film during drying.

Appendix 10.1 Early specifications

Adelaide Gaol

Painters and Glaziers specification taken fram the specification for Adelaide Gaol, titled: 'Specification for the erection of a Jail near the old Aborigines location on the Parklands, Adelaide.'

George Strickland Kingston, Architect. Dated 15 April 1840.'

To knot prime and paint the whole of the external wood and iron work four times in oil and best white lead or such other colour as may be directed. The whole of the joiners' work internally with the exception of the floars and staircase, but including the strings to be knotted primed and painted three coats in oil and white lead.

All windows to be glazed with the best glass. Thase of the solitary cells to be graund.

Dr A.S. Randall Residence

Specification for painting work ta be undertaken upon the residence of Dr A.S Randell, Duttan Terrace, Medindie (just North of the Parklands).

F Kenneth Milne, Architect. Dated 7 December 1915. ${ }^{\text {² }}$

VERANDAH

Staining
Woodwork ta be treated as follows:-
Floar - 2 coats.
Coot 1 No. 1 Lionoil
3 parts
Golden Oak Locklustre I part
Coat 2 No. 1 Lionoil Clear
Allow not less than 24 hours between coats.
Ceilings - To receive 3 Coats compased as follows: -

No. 1 Lionoil	3 parts
Brown Flemish Lacklustre	1 part.

EXTERIOR WOODWORK

All exterior woodwark which has received Cabots
Shingle stains to be finished with 2 Coats as follows:-

No. 1 Lionoil	4 parts
Brawn Flemish Lacklustre	1 part

No. 1 BEDROOM

Woodwork
Coat 1

Mission Lacklustre	1 part
Lionail No. 1	1 part

Coat 2
Shellac Solution composed:-
2 lbs . Berry's Blended Shellac
to 1 Gall Meth sp\%.
Coot 3
Dullgloss
Floars
Coat 1
Lionoil 3 parts

To be applied with a brush and not rubbed off. Then stop with stained putty immediately before applying 2nd coat. Caot 2

Same as Coat Na. 1
Sand with No. 1 Glasspaper \& finish with one full Coat of Liquid Gronite A.
Allow at leost 24 hours between coats.

LIVING ROOM

Ceiling
Coat white Streaks in Oak with mixture as follows:-
Black Flemish Lacklustre 1 part

Lionoil No. 11 part
Apply with Fitch and da not rub off and allow 24
hours before next coat.
All Ceilings and woodwork to be treated as follows:Coat 1

Lionoil No. 1	2 parts
Brown Flemish Lacklustre	1 part
Golden Oak	1 part

Coot 2
Shellac Solution as for No. 1 Bedroam woadwork
Coot 3
Some as Coat 2 sanded when dry with Na . 0

Floors

To be finished same as No. 1 Bedroam

FRONT HALL

All ceilings and woodwork to be treated os follows:
Coat 1

Lionoil	2 parts
Antwerp	2 parts

Coat 2
Shellac Solution os above
Coat 3
Same as Coat 2, sanded when dry with No. 0 poper

Floars
3 Coals same as 'Coat 1' woodwork, finish with one Coat Liquid Granite A.

DINING ROOM

Treat same as Front Hall.

SERVERY

All woadwork to be treated as follows:-
1 st Coat
Lacklustre Forest green 1 part
Lacklustre Bog Oak 1 part
Lionoil 3 parts
2nd Coat
Shellac Solution as above.
3rd Coat
Dullgloss

KITCHEN

All woodwork to be treated as follows:-
1 st Coat
Brown Flemish Lacklustre 1 part
Golden Oak Locklustre 1 part
2nd Coat
Lionoil No. 1
3 rd Coat
Liquid Granite A. reduced with 10%
Turpentine
4th Coat
Liquid Gronite A

Brickwork

2 Coats Liquid Granite A
Brickwork other rooms to be finished in Dull
Finish to be treated as follows:-
2 Coats Liquid Granite B 3 parts
Pure Turpentine

MAIDS ROOM

To correct overstoining
Sandpoper well with 1_Glasspaper then coat with Shelloc Solution well sanded with No. 0 paper ond finish with one coat Dull gloss.

NURSERY

To correct stoining
Sond with No. 0 Glasspaper and give one Coat composed as follows:-

Dull Gloss	1 part
Brown Flemish Lacklustre	1 part

TOY CUPBOARD

To be treated as follows:-
1st Coat
Brown Flemish Lacklustre
2nd Coat
Shelloc Solution
3rd Coat
Dull Gloss

BATHROOM

Preparation
Sandpaper priming Coat already on with No. O. Glasspaper.
Stop with putty compased as follows:-
Linseed Oil Putty 1 part
White Lead in Oil 1 part
Stiffen with French Cholk if necessary.
1 st Coat
Berry's White Enamel Primer - 2 parts
Berry's Luxbury White Enamel - 1 part
Tinted to approved Pearl by
adding Willeys
2nd Coat
Berry's White Enamel Primer ${ }^{1}$ part
Berry's Luxbury White Enamel-1 part
Tinted to Pearl as above.

3rd Coat
Berry's Luxbury Enamel- 2 parts
Berry's White Enamel Primer-1 part
Tinted to Pearl as above.

FENCE
To be treated as follows:-
1st Coat
Lionoil No. $1 \quad 2$ parts
Brown Flemish Lacklustre 1 part
2nd Coat
Lionoil No. $1 \quad 1$ port
Lionoil No. $2 \quad 2$ parts
3rd Coat
Lionoil No. 2

GENERAL WORKING INSTRUCTIONS

All woodwork to be sonded with No. 0 .
Paper, with the grain, before staining and to be thoroughly dusted.

Lacklustre to be applied with a Brush rubbed off across Grain with soft cloth. Sand with No. 1 Glasspaper, with grain, before applying Shellac Coat.

Shellac Solution to be composed as follows:-

Bone Dry Bleaches Shellac - 2 lb . Pure Methylated Spirits - 1 gallon.

To be given 3 days to dissolve and agitated as often as passible.

Before using Shellac Solution strain through Butter Cloth forcing the Gelatinized Shellac through the cloth.

Sand all Shellac work with No. 0
Sandpaper before applying Dull Gloss.

Stopping
Tint all Putty as near as possible to the Colour of the Lacklustre to be used, and stop only immediately before applying the Lacklustre.

Enamelling
All work must be sanded between Coats with No. 0 Glasspaper.

NO. 2 BEDROOM

Treat as follows:-
1 st Coat

Mission Lacklustre	1 port
Lionoil	1 part

2nd Coat
Shellac Solution
3 rd Coot
Dull Gloss

BACK HALL

Treat as follaws:-
Coat
Mission Lacklustre 1 part

Lionoil 1 part
2nd Coat
Shellac Solution
3rd Coat
Dull Gloss

NIGHT NURSERY

Treat as follows:-
1st Coat
Golden Oak Lacklustre 1 part
Lionoil 3 parts
2nd Coat
Shelloc Solution
3rd Coat
Dull Gloss

HARDWOOD DOOR SILLS

Stop immediately before staining with tinted Linseed oil Putty, and treat as follows:-
1 st Coat
Lianoil 2 parts
Brown Flemish Lacklustre I part
2nd Coat
Liquid Granite A
3rd Coat
Liquid Granite A
NOTE
Please note that woadwork in all rooms
except

- Front Hall
- Dining Roam
- Living Roam

Is to receive 1 Coat of Shellac sanded and finished with Berry's Dull Gloss Varnish instead of 2 Coats of Shellac as specified previously.

If possible please finish the roams off in the following order required by the proprietor.

- Dining Room
- Kitchen
- Pantry
- Day Nursery
- No. 1 Bedroam

Dudly C. Iurner Residence
Specification for the residence of Dudly C. Turner, Esq., North Adelaide. F. Kenneth Milne, Architect. Dated July 1919:

EXTERNAL WORK

Preparation. Sond off all loose scales and particles with fine glass poper and apply 2 or 3 coats of stain as follows:-

$$
\begin{aligned}
& \text { Linseed oil I gallon } \\
& \text { United c.p. meadow green in oil } 4 \text { ozs }
\end{aligned}
$$

Allow 7 days between coats
Stopping. Stop immediately before applying finishing coat, w/-pure linseed oil putty tinted to colour of the finish.

References Notes

1 Public Records Office of South Australia, GRG 36/32/10, p. 10. G.S. Kingston's Specification Notes.
2 South Australian Architecture Archives, Milne, F. Kenneth Collection, Series No. 1 (Noteboak, 1906), p. 139.

3 South Australian Architecture Archives, Milne, F. Kenneth Collection, S.I, p. 118.

Lacklustre Woad Finishes

Treatment of Red Pine

Coots os applied. Lacklustre, shellac, and dull gloss finish. Berry bros. Materials.

First coat and preparation: Sandpoper with No. 0 poper first, always WITH the grain of the wood. Then carefully brush off dust.

Then do all stopping necessary to woodwork with tinted putty to match stain, and only stop a portion thot con be stained the some day, or before the putty is dry.

Then stain with lacklustre, the shade to be selected and reduce to the required shode with Lionoil, (which is the thinning property for all stains). Only stoin small portions at a time, and rub off immediately with clean rag (cheese cloth).

NOTE. The painter must be careful to judge for himself the difference in the noture of the timber, and where soft of dark fimber is met with, the stain must be thinned weaker (using Lionoil).
After staining use Sondpaper again with the groin, this time bringing out all the high lights.

2nd coat. Berry Bros. Bone drop bleached shellac, mixed with pure methylated spirits, 2 lbs . Shellac to 1 gallon spirits. Shellac must be used thin, and stroined through butter cloth first.

Final. Then sondpoper (No. O) with the groin. Apply Berry Bros. Dull gloss finish full and evenly. (From Kenneth Milne's Notebook)

Courtesy: Dulux
Colours represented may vary from actual paint colours

Courtesy: Dulux
Colours represented may vary from actual paint colours

Courtesy: Dulux
Colours represented may vary from actual paint colours

Appendix 10.2 Addresses

- 'Lead Alerr'. Available from: Commonwealth Environment Protection Agency, 40 Blackall St. Barton ACT 2600.
South Australian Environment Protection Authority. Telephone: (08) 82042000.
- Computer-generated Colour Previews are avoilable (upon payment of a fee) from: The Dulux Colour Bureau, PO Box 60, Clayton South, Victoria, Australia 3169.

Appendix 10.3 Further items of interest

Durability

An article relating to durability at colours appears in a 1921 gazette (South Australian), headed 'Choice of Colours':

The subject af calaurs for outside work is a subject of much importance, especially with respect to street doors. Although the painter sometimes has the opportunity of advising os to the colour of such doors, it more offen happens that the colour is chosen by the occupier, and green is the favourite colour far this purpose. Now green is very apt to blister, as are most of the dark colours, because of their excessive absorption of heat. Lighter colours have not this advantage: yet strangely enough, black is probably the most durable of oll pigments. It may be objected that a frant door painted black looks rather funereal, but this appearance may be avoided by painting the mouldings a decorative colour, or gilding them. The reason far this superior permanency of black is that the black absorbs mare oil than the white. Pure and brilliant pigments shauld be used for outside wark.

Intensity

Toned' colours known under such nomes as art green, ort blue, art brown, ond so on. These are low-toned colours, generally lowered by the addition of complementaries. For example, a blue of greenish tone may be lowered by adding red, and the resultant colour will differ in tone from the one subdued by the addition of black. Art greens may be made by adding the complementary red to the bright green in such quantity as to produce a clean quiet tone af colour.

Wedgwood greens and blues are mixtures of the three primaries, red, yellow, and blue; with Wedgwood blue, the blue is in excess; with the green, the green is in excess. Art greys may be compounded from white, and the three primaries, the grey being yellow, red, or blue, according ta which one predaminates. Source: (pp. 128-9) Practical Painter and Decorator

Colour mixing

The Practical Painter and Decorator, 1949 edited by Geeson Williams, in discussing colour mixing, says:

Whotever tint is selected from a colour card, except for simple preservative painting, there will always be required of the painter a knowledge of calaur tone and harmony. This can never be possessed if there is not previously the skill to mix and to match the generality of tints. (p. 123)

Red! What is red, so far as pigment is concerned? It may be a red inclining to scarlet, or a bluish red tending to crimson; and so with the blue, greenish or purplish in tone. In practice it will be found that vermilion is unsuitable for crimson tones, ultramarine far green tones. (p. 124)

CB
REINFORCED There in extra strenzth in every brushful
Manufactured by Borthwicks Pty. Coy Sydney-Melbourne-Brisbane.

48
is REINFORCED

Courtesy: Alan Feder, Solver Paints

Reproductions of old articles from The Builder

 and from Building World
The Use of Ready=made Paint

A_{5} is now generally ktiown, sevorat manuface turens have laid theniselves out to suppiy the painting and decorating trader witil reay-made painterial to the Jowngrate stuff exhibited for the last tiventy-five ycars or mure in the windows Ambricans tary giont the country. The introluction, and alroady the use of ready-mise paint is commoni in the Orited States. Rnt in Earland there has been a greater amount of conservatism to contend against, aul ahthough ready-made enamel palata are now the vogue, and lost few painters would attempt to make thatt own, yct in the chace of of paint for ondimary application the majority of painturs still mix ip Hicir onti materfal. The arguments advanced against the use of reardy-rude paint have just buit curionsly wars ut the latter material ranty give them lied

Paint to Suit Various Conditions

The practical pornter hases his chict phocethon for ready-mudo paint on the angument that each batelt of paint neels to be mate to suit
 portions of pigment, on, intpenting ant driers
vill vary with circumstances, of coursc, if paints of varying qualities ore demanded, the mants of varymper can easily sopply. bot it may fairly be asked whether the yraclice of varying the quality of paiat is hot followed toa extensively. There are painters and patuters, and while some theu can be retied upan to max up, a paint that pill aur to be appliod, a groat number of the men it is to be appliod, a grvat number ore the techacal
emjloged fin the trade lave nither knowledge nor the expurience to warrant their aking fol point for ketheral application might be consitered by some peopir it a postive atrantago. Howerer that tata be, it thay teasomabiy be asolnach that a groit arade of oil paint whil answef a latge mumbor of repurements, and
that in spociat canos sume simple modification,
 hay io resorted is math give information as to the best means of thithand therofore fealy-ulatle pant is tol to Tie rasanted as staf covo ofliose combtitueger the pabiter thas ne conilfot: a word of cantoin is theresary There, thumet, fiecomen it turdy anwess

 paints the be tuade hif sude and surh magrolicuts
 thene momlifiestion.

Mixing at the Jols

The upponent of the modyoursid matermi
 What all paints shonld ter mixal in the twom

 cecenity
folseat.
"Rinta for Carpanters !

Mur fints of tuots and wateriats ame girrit in the

where itey ate to he usel, and urges that dic lim nutel, from an ariatic stimborit, impose absunt limitations. Tlis argumeat has wedight, but it anst he atif that tho mixator of tints on the job is far trum hemg a aniversal system at the present time, and that in ruany cases the tiato Ire misca in thit paint ylog, which may, in nithes at leact one enternisione fummfactmrer, wlas pits up twenty different fimi or colourn and aumplive with tifs materials a tist cant showing propostions of white paint to be puffed to the staularil colours to ponfluck eighty intller timts.
Fine Grinding and Even Suspension Probably the greateat advautace clamod for is mady-male paints is that tie pigment. containe
is evenfy and findy promit, and is mutelt more futhately mised wifin the velucle The old-fashioned pafiter did not approctute that the everness and the fincosess of the pigment and ass even suspension of the partictes in the poind wathicte vere essemtials to the ptodaction of a durable puiat film. Tliese condiLions are difficult to oftam exexpt by grindiag of the question in the geteralite of paint shopu where, as will be croarally almotital, the rliethods of miving paint are exlemiely efementary; lie stirring topether of the ingredicnts with a stick, or the rafbing of the pant tlirongh a siow, are generully the most that is fonc, zatit thase processes cannet compare in the point of efficioncy wilh gribding Only recenty lias the small paint mill made misuch boatway. It mulst be confessed that in all ready-made paints the figrectients are two gromed togutiber: but it is
safe to saly that by whatever procts they ase profluced, the mixing is sure to bo murce efticiently done than in the cons of shop-made painf It must be rememberel that the demand for the Jeady-tuade thaterial is not very large as fot, and that witls the growth of the dematal will some mofe perfected midtuals of pmatue. fout surfi, at iny true, lase liewn the expert ency in dor Cuited Statiot

Stale Paint

Roady-made pant is haty ta give tromble wher it has leell atherw to beomme state, thes beag due to the fow fiat the wayber of dres colitainot in tho pint and pultoce fattiocsor. It soomit be fowitle for phi polat xa be sys. tenuativally rolurnal to the mambagorve iv be rogroumb and thaned. hut the whtur fimb ant to prowest the motathon fir ther wated cas,
 it mamd the tronlte indicatel with lo siverome

 htoke the speathe gravter of thes rognteat is 20

 incom
-Tbe Elements of Meinforced Congrate Bulddias

 th, and they bitougnor at thant hirciudsplese und

 arade paint aufurally take it for vombel that the maternd, whatever Lbs akc, be teaty for tive the minmote the tig is oplay, unt they are rublier liabie to suegiect so simpfa a precaution. Thern afe ways aud necass of preventlog the in the ghicle saimar luedy pugnemts sinkito Hended. The invargitivn uf andy loc from of solic soap and shem is found bo beys the of soit mop attd atute is foathd to ave the ation witutions in minjinction form soap of dumanisuil, whits has the altantuge of beme

 shable for Lte treatmon.

Testing Paint

It io hat diftivil in leat die grulity of fatily
 the stiposal of the framafactans. Ifir a prumfical and smpie lest, porr a quintity is the
 or a feve bouts or, preferably, for town tayx The free of oa top shonld then be porenol fito abotic, leaving tho puly as dry as yumble A teaspion if ever a bomen borncr or aimil gime The liette beads of lead, compiated with this quantity of clumat acti; will give womse ithan of the relative purity of the pigtuat. But the makn facturer may datim that his palit in pite atlungh as much sis onethind of fofegit malte Ppeain to bo preseat ; it suen a tase it white
 ased frexy, bont borause it is cheap mit bechise

A good pait atwaga reveals itn paality fy Eesioture to stems and ned can lon fupht thy kecping a small paintel slip af tion of imm fir several hours over a vesod cotbaintus stowing Water or firtitig nitric acid, afteryards follocing: the pratit carchully rad lookiog for cozresia nis fist tharks. The vil that is Eibent form the tey. of the fraint suay be futheot hy the aneth if Ahe

Other Advantages of Fleady made Paint

 aud the iltor of ofdumit. in thic Fowdere uin

 ame it it of itro urimal tmp rinese to tom
 eve of Gif cleag tosily butc poblel wis athy Thast In fivappotitment ansl fora

A Great Story. - Itaro yua vait the openims

The Advantages and Disadvantages of Washable Distempers

Byiow we give the concluding portion of our Buiow we give the concluding portion of our
report of the discussion on "The Advantages eport of the discussion on Pe Advantages mich took place recenty at a mecting of the Paint toon phare society Paint and Va in Nocit
ment appeared in No. 741
In concluding his remarks, Mr. CruickshankSmith, who opened the discussion, said that no inconsiderable part of the popularity of certain tempera paints has been due to the fact that neither in their composition nor in the results of their application and use can they be coniary materials It is interesting in this convectary materials. tion to note that at least one tempera paint in Britain is, I believe, accepted by the factory inspection department of the Home Omin as a paint "in the sense that walls treated with it need be repainted only once in three years instead of once every twelve or fourteen months, as is the case when a distemper is used
Mr. J. Russell Thornbury observed that a great detriment to water paint as a material of lasting consumption, to be universally accepted by the trade, was the cutting of prices and the consequent putting on the market of rubbish which would prejudice any dear article; perhaps more had been done in this direction with water paints to spoil the reputation than with
any other material. The fact that water paints could be applied to new plaster or cement work was a great advantage
In a brief speech -Mr Tentings said, in comparing water paint and wall-papers : The plain flat surface has become very popular during the last few years, and I must confess to being an admirer of it myself. Paste water paints are a great preventative of blistering to oil paints. For instance, some doors were carefully burnt ff and given two coats of water paint, two coats f oil paint, and two coats of varnish, the result eing quite satisfactory: the doors which had previously blistered are now, quite free from this trouble. Whilst admiring a plain wall surface, I can quite appreciate the advantage from some points of view of a quiet design, and here unoubtedly wall-paper scores over distemper from an economical aspect.
Mr. Screeton said that in the case of a very porous wall, a first coat and warm and thin paint should be laid on, followed by a thick coat. The medium of a good water paint is an oil emulsion, and success lies in the care with which this is made, and also with the manner in which the pigments are ground with it. In a properly made water paint each particle of pigment is surrounded and held in place by a film of oil, and there is no excess of medium to form a
film over the surface of the work, as in the case of an oil paint. I would like, in conclusion to refer to casual preparation of the surface that is gerierally thought sufficient for painting a wall in water paint Compare, for instance, the care with which the surface of a door is prepared for painting to that which is deemed sufficient in the case of a wall. in reality, a wall surface requires much more careful preparation to ensure a thoroughly good job
Mr. G. Line said: I anticipate that the good points and the proper use of plain paint in the decoration of residences are likely to be increas ingly recognised, and that the use of paints will increase, but that such jncreased use of those materials is not likely to affect the use of wall papers to any very marked degree. I am more inclined to that view because in the decoration of the average house, in these days, the questions both of time and of cost are of considerable importance. If it could be anticipated that paint manufacturers and distributors, wholesale and retail, would be enabled to supply paints at such low prices, and to apply them with such despatch as to compare very favourably against the same costs incurred in the use of wall-papers, then I should regard the prospects of a largely increased adoption of paint as correspondingly brighter

Group 2-Lake Caiors.
Is the cas of the yellows there is intile on for wed to bind one, as the shromes and erhres-furnist sll that are required, so that Il we find is a lime rellow of a nele lemol shade to use in elistempers wherv lead chromes are not permitted, i.e. is sul phuretted hydrogen stmospheres
"Bloe Lakes are not of much account as gaint colors, as all shades may be obtained from Prussian and altramarine blaes
1暨ed thines are much more numerous, for we have vermilionettes, permanent reds, madder, acarlei, and crimsos lakes, \&c. The most permanent are undoubtedly those wade from Helio R.L. atracke either on blank baxe. harytes, or orange lead. The color is of vermition ahade, and when used with ans white to give even pale fleah colors, it is found that even this pale shade will remain icrmanent for years.
Fermanent Redr are also made from madler lakes with orange lead but are iselined oo deepen conaiderably in the course of time Vermilionettes may be had tir very loright shades, lunt are only suitable when used out of reach of direct sumlight.
Madder Lakes are very Lafe colurs for fither ventide or mside wwirk, and also are suitable for tinting. lout have all a terdency to deepen.
Scarlet and Orimeon Lake are alf mure or less fugitive, and showid be painted over a permasent ted so that the change of color rould not be so noticeable
Fars Reds or Bright Turkey Reds arv uraduaily losing their place in the paint arade on acrount of their solability in ail known as "bleeding.
Rone Nink as a color is of little use, as it fades very rapidly.
Vloler Lales may now be obtained. They are quite perwanent, luat there is oot mucl lemand for them.
Mahogany Labes are suitable for certain purposes, such as the marnacture of oi virnish stainc, hrut are mot permaneat
We now rome to the white-manufactured aroducts, and must, of course, commetice with White Leed. Without a doubt the white lead made by the Stack process is the best, though not the whitest (the Chamber and Precipitated processes both being whiter), but in the working under

The fornali thest is a samethise 3)out Stack process lead which makes it beloved of the paster. One thina is certain, that it will staod far further it diection with of before it becoeves anmerh ahe than either the Chamber or the achet process. For ground work and autsidr ork it is unrivalied
White Zinc Oalde. There is neching to qual this for enamel, or a stose finishing cnat With nil it gives a very hard surface to the paint, but unfortunaisly tloes ant wes well on outside jobs. if inithe phrent whit obtainahir
Lithopone. This is a mast aseful pigmen: or decorative work, or ineide work of an everydav mature, and forms the hasis of the cheap ordivary liguid pains in the trade it lias a good body and spreadiug power lout has many defects which reguire cart on the part of the user Io uany casee it has lieets bnown to becomic a slate colur in the ahserse of light, which celor becomes whin on exposure. It occasionally goes off colot with direct sunlight and when in conjun. tion sith white lead becoenes black, ewien to the chemical action. It canaot be naed saifly on outside work, and is of no the where there is vibration, ai this canses th paint io peet info strips A) a distempe calor, and in tilicate forporoof painss it it very aseful
Timinoz or Oride of Amtimeny. This ir tae of the new pigments, being explaited if rase of white lead abolition. Up to the pre sent nothisg very fevorable caif be aud asich its relability, and it certainly has some ver: objectionable feature, which, howrver, en in due course be evercome
Titan White of Titaalum. Dudde is arr tainly one of the best whites recenty pr on the market. It has magniforet hidime and spreading properties, and is of zon! color. However, it is too soon to give sey cerdict as regarde its usefulaces, as timin alone will bring out its defects or geod points.

Before pasaing from the mhirs we vosuld adrocate the use of mixed white fieminats strh at white lead and whise rias otivil thas grester hiding and spreading power theether, and is also a befter turstective for onside aork but the white ame munt but br more than 30 per rent
(Conrtuded)

Bone Black or Drop Black, the 6nest suabities of which are made from Ivory, is the biackest of all the catbon blacks, and is used chiefly for its colour. It is ground and thinsed in goldsize and rurpentine, and the dried paint then varuished. It may also be used in conjunction with chromes and light steens, to tive the riehest bronze greeus.
Vine Black or Blue Bleck is used as a dis. temper black, and when ground with baryted forms the basis of ordinary black vaiuth Its colour, however, is not intense enorigh, but that is euhanced by the addition of thest gas carhon btack
Lamp Black is a poor coleur as a hlack. hat has cocellent tinting qualities, and when mixed with white produces blue-gray sluades. It is a very solt hlack, and takes iwice its own weight in oil to grind it. so that when ground few particlen escape the griuding. and in consequence it mixes readily with white, and docs not show a single strak, This oil-absorbing quality, together with the fact that it dries well, renders it lughly suitable for use in coating tarpaulin covers. which is its largest use.
Ots Carbon Black, by far the strongest of all the blacks, should never be uned alone, as the particles do not seem to be well enough ground out, which in some measure prevents its drying uniformly. However, when ground with abrout 90 per cent harytes, vine black, or other extender, it is the black paint which is in Eeneral use.
Lamp Btack and Carbon Black are of ne use as water colors, as they always contain small quantities of mineral oil which prewents their mixing well with water.

Group 2
We have now for consideration the chemical colors.
Uluamarine Blue and the lower grade of the same, lime blue, are prepared by fasing together in definite quantiries (clay, soda. slasiber sall, sulpline, carbon and silica).
Ultramarine blue is a favorite color with the sigmwriter and used in conjunction with the signwriter and used in conjunction with
aluminium is well in evidence on advertisealuminium is well in evidence on advertise-
ments. It is ised in distemper colors on secount of being analtered by lime, tce.
Prosalan Blue or Chinese Blue, in the tempine gualities, and Brunswick and Celestial blue in the reduced qualities, are the saint in composition and behaviour. In oil they are very permanent, but cannot be used as Aistemper colors, being, as they are, decompesed by liase and alkali. They may, howerer, be added to zinc or lead chrome in all propertions, to give green colours.
When used os ironwork, Prasaian blue is i. fine protection for the iron, as it prevents rueting. It can also be ased with all kleds of whites, to give light blse tints, which are very permanent. A large propontion of wieut drier should never be used with Prussian blac colors, as it refluces the blue tie a lavender shade.

Ciremstes of Leed vary from the pale peimerose to the deepest orsnev, and even to reds vis: Pervias red or Ansericen vermilios. All are very miteble for general palatuge. lus if not well made will sometimes blecken considerably. They also blacken when enposed to sulphuretted hydrogen in the at mesphere, and are on that accoust net wery
stitable for outdoor work in towns, or as distemper colors. The Persian red or hasie chromate is alleged to be the finest rust preventer yet discovered.
Zine Chromste may be used is a Distemper color, or as ant oil paint, but on the whole lacks body. However, it is more per. mavent than the lead chromes. When maxed with Prussian blee if gives a clear brighr krem.
Cadmium Yellow may be had in various shades, but all are salphide of cadmises. The cadntiun zellows are very permanen! anless acted upon by strong chemicals. They are used for painting cars, scic., hat are too expensive for ordthary purposes
In the green pigusents we have the chronigreens, which have uireacly been mentioned with the chromes and blwes.
Emerald Green in as extremely briath rolor, but is abo fuytive and easily decompooet. Its ase is found in painting yachts is an anti-fouting.

Red Land is the well lanown baide of lead used for painting iroin work to prevent rasting. When properly applied with raw and lociled tinseed oil, it gives splendid resolts. but the red lead should again be cooted with asi inert pigment; to protect the red lead from being destroyed by impure atmospheric conditions The yuantity of off should not be of mure than four gallous of oil to one buadredweight of red lead. Red lead ready for userpan now be obtained, but that simply meaty, deing a non or semi-drying oil in place bilisered or by psing red lred oxidized place oungred, or hy using fed lead oxity and timesed eil. Nesto its fullesi capactity and linssed oni, Keither is to be compared to the mixing of ordinary dry red lead and tinsoed oil, as its. sreat virtue lies in the fact that it sets hard whes brushed out.
Vernition or Sulphide of Mareary io not now much used at I paint color, hecaase far more relliable rexults are obtainahle from permanent rels. Vermilimn is, however, still sometimes uned for liming.
(To be continued.)

An all-round paint!

For evorywhere abow the heous.

For thou patb expoued to the veralini, lie indoun hase
 ubiea to heary mofe- in

machinemade paint.

Ton Eviny purpors on eviay surpace

'MAJORA' PMIIT AMO VIRMIISH PRODUCTS

-hajora producta ineluse:
"itajore" Pure Mixed Palime
"Neflors" yuir Whate
"Mrajers" Water Paint
"Masjors" Colours in ott
"Majorw" Verniabes
Distributine Agenta for S.A.:
POTTB Agentation
19 Pronldin foreet.
'Phone, Cent. tiant.

Coloust may be looked uman an divided into threr uroups:-
(1) Furth Celork, suelh me ochrs, mmber red axidf. the.
(1) Cuetifiet Colors, such as shromes Stoes, greens, \&r.
(a) Calir Colora, including all pigment: made by precipitation, such a vermilionettes and permaneat reds.

Earth Calerz. The sommon to Frinch orlires are used in distemper work on ac count of their extreme sofiness, lighthes, and brightness of color, and sousetimes alen in oil paiass, but an a rule lack covering power, containing, a" they do, about 70 per cent. stifa, which is tramsparent.

Spanish Ochre. This is very hard to griad but has good body, and thay be useil equally well as a straight color. or for tiet ng. The shade of the tint remains ax. tremely constant.

Itallen Ochre or Sardinian Eanth whes ground in oil is known as 1talian Yellow. and gives the brightest and palest yellow tims of all the ochres, but has the sliekt dis advantage of the tiat deepening in the cours of time.
Rave Siennas used for graining are also eometimes ased for tinting. but the fint de velops even more than in the case of Ttaliat Yellow. This dexpening is due to the presence of hydrated water in the sieana, which tives it its transparevicy, but when the sienm, lrecomes dehydrated the deepening take. place.

Burnt glienne is the raw sienne burnt, and is used for graining and tinting. The briphter and more-transparent it is, the bet ter its use for graining. In Australis it tinting power to a greal extent determines its value, and with white lead should givr from salmon to reddish brown tones.
Uembers, Rave and Burnt, are largely usetl by all. the finest qualities consing from Cyprus. The real value of an umber lies in the fineness of the erinding and purity. Both the raw and the burni umbers change their tone considerably when exposed to light, especially when tued as distemper colors.
whilat when used as tinte in oif colort they develop considerably.
Red Oxides are of two binde the naturs jigments such as iroa, are and the naidec obtsined by rossting copperan (i.e., sulphate of iron) The percentage of Fesea (ferrir noxidel is not always an indication of the calue of the osides, either in the case of the natural or the manufactured product.
The brimhirst of all the matural uxidet is the Persian Gull red oxide. which has * ferric oxide content of approsimately $6 e$ per tent. whilst some Spanish oxidet have ss feer cent., the tone of the latter being oor nearly so vathable as the Persian Gutf oside. nearly so vahuble an the Persian Gulf oside
In the case of manufactured oxides, it has been found that some of the $05-0 \mathrm{~A}$ per cent oxides made from waste liquors lu the galvawsing process were not fit to be ased in paints, and whell painted over from caused ruat to appest in a fer days time.
The strong bright red owades, ach atenctian red of sood yually, stand kx tremely well, and so also do the Indian reds. lath of which are manufactured fram rom jeras. None of the liright irum oxides, swefic as Venetian rede, red oxides, and todies reds can he lorked upou as preventing irou from rustina, but afford a gocat photertion for the iron so lonk as the paint remains n. good condition
Black Ozide of Irom is not much abed as a paint colour, being only a very dari tate chadre with the particular virtur.
Graphite or Pumbago is crymallised var fron, and is used as a paint color te sumer exient. Its chisf properties are its enormons spreading and acid-revisting power, but it cannot lie used slone on iron work as i causer rusting.

Mineral Blach is a black form nf slase and is, like black oside or trou, 100 poor in rolec to lif of miuch interest

Cassel Brown or Vandyle Brown is usel for staining wood and grainisg, but bas littlvalue as a paint colour. apart from that wn account of its tranaparency.
We now come to the manufactured blark. Bone black, vipe black Inrap of veretshie black, gas carbon black.

Value exercise

Example of an exercise sheet from
the NCS Colour System.

Colours represented may vary from actual paint colours
Detail from chart
Pick out the eight achromatic colour samples and arrange them in a scale from white (W) to black (S) Then take one chromatic colour sample at a time and compare this colour with the scale from white to black Where the border line between the samples is minimally distinct the chromatic colour sample has the same light ness as the grey sample. Mount the chromatic samples in horizontal columns out from the corresponding grey sample

Appendix 10.4 Recipes

Lime wash recipes
Gehrig, 1985, p. 59 lists the following as good recipes for exterior lime washes:

1. 35 lbs of rock lime: and
9.5 gallons of sea water
2. 35 lb of rock lime;

3 lb of powdered glue, dissolved in water;
7 lb of zinc oxide;
4 lb of salt; and
10 gallons of water.
3. 35 lbs of rock lime:

24 lbs of whiting;
2 lbs of powdered alum;
2 lbs of powdered glue dissolved in water;
0.5 gallon of linseed oil; and

10 gallons of water.
4. 35 Ibs of rock lime;

7 lbs of zinc oxide;
llb of dripping; and
10 gallons of skim milk.
From a publication published in New Zealand by: 'The N.Z. Dairy Produce Exporter' Newspaper Company, Ltd. (Undated) Do It Yourself: [A complete, concise manual, containing hundreds of proctical ideas ond simple instructions for making improvements to the home, carrying out repair jobs of all descriptions, making indoor and outdoor furniture, and erecting buildings about the home.]

It is possible to get dull brown paints from white lead and added tints, but a much more satisfactory chocolate paint, porticularly suitable for sheds and farm buildings, can be made from a mixture of Indian Red and oils. This has the added advantage of being considerably cheaper to make than lead paint. Here is a mixture which gives a rich, dark chocolate colour.

1 cwt . Indian Red
1 gallons raw linseed oil
1 pint terebine (driers)
14 lb . black in oil
(Above quantities make about 8 gallons of paint.)
Hints on using whifewash

If it is possible to do so, whitewashes will be better for being applied hot. If you can heat the whitewash in a benzine tin, and keep it hot, you will get much better results.

To prevent whitewash dusting off after a time, it is a good plan to add loz. of alum for each gallon of whitewash. Where flour paste is used in a recipe it serves the same purpose, but it is a good idea then to add a liftle sulphote of zinc as well, to prevent the flour decaying.

You can obtain a glossy surface with whitewash by mixing with it a small quantity of ordinary laundry soap. Flake the soap, then heat until dissolved. The quontity needed varies considerably, but a trial with a board or two will soan give you the gloss you require.

Whitewash may be coloured. The best colours to use are those which are used for colouring cement, but dry pointer's colours such as yellow ochre, red oxide, lampblack, raw and burnt umber and raw and burnt sienna may be added to the whitewash. This needs to be done carefully so that the colour may be thoroughly well incorporated. Chrome yellow, chrome green and Prussian blue must not be used with whitewash as they are adversely affected by alkali.

Size

3oz of glue to 1 gollon of woter, Gehrig, 1985, p. 49.

Copol Vornish

A good oil copol vornish con be mode os follows. Toke 2 lbs of pole copol resin ond fuse. To this odd 1 pint of hot linseed oil ond reboil. Toke from the heot ond odd 0.25 gallan af wood turpentine.

A second method is to powder loz of copal resin. To this is odded 0.25 gollon of spirits of wine. Ploce in a jor ond shoke occosionolly until dissolved. Stroin before using. Gehrig, 19B5, p. 43.

11 BIBLIOGRAPHY

Albony Juliet 1995 'Environmentol Colour'. Spectrum, Journol of the Colour Society of Austrolio vol 10, nol Oct.

Audel, Theo 1945. Pointing ond Decoroting Working Methods. Internotionol Associotion of Moster Pointers ond Decorotors, New York, 2nd ed.

Bell, Jennifer. Moster Works. Rondom Hause.

Berry, D.W. ond Gilbert, S.H. 1981. Pioneer Building Techniques in South Austrolio. GilbertPortners, Adelaide.

Birren, Fober 197B. Color \& Humon Responses. Von Nostrond Reinhold, New York.

Bock, Gardon 1996. Old-House Journol U.S.A'Choosing Exterior Point'.

Boyd, Robin 1952. Austrolio's House. Melbourne University Press.

Building World 1910. no. 742, UK.

Building Warld 1918. New Series no. 10, U.K.

Design Guidelines 4. Adoptation ond Additians to Heritage Buildings.

Design Guidelines for Burro Sheet 5 .

Evons, Ion 1980. Restoring Old Houses. Mocmillon, Melbourne.

Evons, Ion, Lucos, Clive and Stapletan, lan 1986.
Calaur Schemes for Old Austrolion Houses. Flannel Flower Press, Sydney.

Exterior Point Finishes. Technical Bulletin 1.2, Austrolia Cauncil af Natianal Trust.

Freelond, John 19B1. Archirecture in Australia.
Penguin.

Freeman, Michael 1990. The 35 MM Hondboak.
New Burlington Books, London.

Fulton, W. 1906. 'Taste in House Decorotion'. Austrolion Decorotor ond Pointer.

Geeson, Alfred 1948. The Practical Painter \& Decorator vol. 2. Virtue, London.

Gehrig, Keith 1985. A Guide to Troditional Painting Techniques. Research Study no. 9. The Heritage Council of New South Wales.

Gehrig, Keith, Bill Stewart et al. 1984 Point and Wollpaper. Time Life Books, Amsterdam.

Graves, Maitland 1951. The Art of Color ond Design. McGrow-Hill, New York.

Green-Armytage, Paul 1995. 'Colour Order Systems for Designers-Pantone, NCS ond Colorcurve' Spectrum vol. 9, no. 2 April.

Hare, Clive H. 1994. 'Vegetable Oils' - Anatomy of Paint, Materials Technology Section.

Hildebrand, J.H. 1950 The Solubility of Non-Electrolytes. Reinhold, New York.

Holtzschue, Linda 1995. Understonding Color. Von Nostrand Reinhold, New York.

Innes, Jocasts 1985. Paint Magic. Doubleday, NSW.

Irving, Robert, Apperley, Richard et al. 1985.
Australian House. OUP.

Lambert, Parricio, Staepelaere, Barbara and Fry, Mary G. 1986. Color and Fiber. Schiffer, USA.

Lane, Terence and Serle, Jessie 1990. Australians af Home. Oxford.

Lardnerr, Helen for the Historic Buildings Council 1993. Caring for Historic Buildings. Department of Planning and Development.

Lee Lee's Priceless Recipes. 3000 Secrets For The Home, Form, Loborotory, Workshop And Every Deportment Of Human Endeavor.

Lewis, Miles ond Blake, Alison 1977 Exterior Point Colours. Technical Bulletin 1.2. Austrolian Council of Nationol Trust.

Loftus, Simon 1992. Puligny-Montrochet, Journol of a Villoge in Burgundy. Ebury, Rondom House. London.

Loudon, J.C. 1833. An Encyclopaedio of Cottoge, Farm, and Villa Architecture and Furniture. Longmon, London.

Lovell, Peter ond Riddett, Robyn 'Exterior Color Schemes Made Easy'. Period Home Renovotor Magazine.

Mante, Horald 1972. Color Design in Photography. Focal Press, London.

Marsden, S., Stark, Paul et al. 1991. Heritage of the City of Adelaide: on illustrated guide. The Corporation, Adelaide.

Muthesius, Stefon 1982. The English Terroced House. Yole University.

Persse, John ond Rose, Duncon 19B1. 'House Styles in Adeloide'. Stock Journol, Adelaide.

Practical Home Decorating ond Repairs. Odhoms Press, London.

Ruskin, John 1932. The Seven Lamps of Architecture. J.M. Dent, London.

Schofield, L.P. 1971 Bosic Limewash. SPAB (Sociely for the Protection of Ancient Buildings) Information Sheet no. 1, London.

Stone Masonry in South Australia. Technical Note 3.6, Department of Environment and Natural Resources.
'Surface coatings'. Oil and Colour Chemists Association. TAFE Technical Books.

Tanner, Haward and Cax, Philip 1975. Restaring Old
Australian Hauses \& Buildings: an architectural guide. Marmillan, Melbaurne.

The Coating Inspectar's Hand Book. Bechtel Carparatian, Steel Structures Painting Cauncil, USA.

The Camplete Handyman. 1949. Odhams Press, Landon.

Waldran, Faulkner 1972. Architecture and Calar Systems.

Weeks, Kay D. and Look, David W. Exteriar Paint Prablems an Histaric Woodwark. (10 Preservatian Briefs.) Technical Preservatian Services, Preservatian Assistance Divisian, Natianal Park Service, US Department of the Interiar.

Wright, Adela 1986. Remaving Paint fram Old Buildings. Infarmatian Sheet na. 5, Society far the Pratectian of Ancient Buildings, UK.

12 FURTHER READING

Butler, G. 1992. The Califarnian bungalaw in Australia. Lathian, Melbaurne.

Canservatian af Federation Hauses Seminar, 16 May 1981. Sydney. Heritage Cauncil af NSW.

Department af Hausing and Canstructian Canberra 1984. Decarative painting af buildings. Building infarmatian series.

Eastlake, C.L. 1872. Hints an hausehald taste in furniture, uphalstery and ather details. Langmans, Green and Ca., Landan.

Evans, I. 1983. Furnishing Old Hauses: A guide ta interiar restaratian. Marmillan, Sauth Melbaurne.

Evans, I., Lucas, C. and Stapletan, I. 1984. Calaur schemes for Old Australian Hauses. Flannel Flawer Press, Glebe, NSW.

Evans, I. 1986. The federatian hause, a restaration guide. Flannel Flawer Press, Sydney.

Evans, I. 1988. Caring far Old Hauses. Flannel Flawer Press, Glebe, Sydney.

Evans, I. 1990. The camplete Australian Old Hause Catalogue. Flannel Flawer Press, Yeranga, Queensland.

Evans, I., Lucas, C. and Stapletan, I. 1992.
Mare Calaur Schemes far Old Australian Hauses. Flannel Flawer Press, Yeranga, Queensland.

Rawarth, B. 1991. 'Our inter-war hauses: haw ta recagnise, restare and extend hauses af the 1920's and 1930's.' Natianal Trust af Australia, Melbourne.

Stapletan, Maisy 1983. Histaric Interiars. Sydney Callege of the Arts Press, Glebe, NSW.

OTHER PUBLICATIONS

INFORMATION LEAFLETS

These pravide up ta date infarmatian an legislatian, regulatians, available funding and criteria far entry in the State Heritage Register.

1.1 Definitians and guidelines

1.2 Guidelines ta approoches far canserving heritage places
1.3 Planning far canservatian management
1.4 Criteria far inclusian of places in the State Heritage Register
1.5 Summary of Heritage Act 1993
1.6 Summary af Develapment Act 1993
1.7 Entering a place in the State Heritage Register
1.8 Heritage Funding in Sauth Australia
1.9 Archaealagical sites and artefocts
1.10 Sauth Australian Architecture: a reading list

GUIDELINES

These booklets pravide information and pramate awareness an a wide range af design matters related ta heritage, ranging fram new develapment ta signage and fences.
2.1 Madel brief far the preparatian of canservatian plans
2.2 Advertising signs an heritage buildings in Sauth Australia
2.3 Fences in Sauth Australia
2.4 Alteratians and additians
2.5 Gardens in Sauth Australia 1840-1940

TECHNICAL NOTES

These booklets pravide mainly technical infarmatian ta assist in the maintenance and canservatian of ald buildings.
3.1 An awner's guide ta the maintenance of histaric buildings
3.2 Check it! The maintenance and housekeeping af histaric places
3.3 Early bricks and brickwark in South Australia
3.4 Remaval af paint fram masanry
3.5 Cleaning af masanry
3.6 Stane masonry in South Australia
3.7 Painting af alder buildings in Sauth Australia
3.8 Rising damp and salt altack

[^0]: Semaphore Post and Telegroph Office ic 1880

[^1]: Subtractive process

[^2]: Painting of Older Buildings

[^3]: Painting of Older Buildings

[^4]: A publication issued by the Environmental
 Protection Agency, on agency of the
 Federal Department of the Environment
 See Appendices for availability addresses

