



Monitoring of acid sulfate soil environments in the Lower Lakes & adjacent tributaries

CSIRO LAND & WATER

Andrew Baker, Paul Shand and Rob Fitzpatrick

1 February 2013







#### What are acid sulfate soils\*

Soils and sediments that contain detectable sulfide minerals, principally pyrite (FeS<sub>2</sub>) or monosulfides (FeS), or have been impacted by their oxidation products

- Sulfidic soils are those that contain detectable sulfide
- **Hypersulfidic** soil is sulfidic soil material that is capable of severe acidification (pH < 4) as a result of oxidation of contained sulfides
- Sulfuric soil has a pH less than 4 as a result of oxidation of contained sulfides



<sup>\*</sup> Sullivan, L.A., Fitzpatrick, R.W., Bush, R.T., Burton, E.D., Shand, P. and Ward, N.J. 2009 Modifications to the classification of acid sulfate soil materials. Southern Cross GeoScience Technical Report No. 309.

# **Monitoring of ASS recovery**



- 17 transects/study areas
- 34 study sites
- Soil profiles (≈ 1 m deep) collected at each site on 6 or more occasions between March 2008 and June 2012
- Over 1100 soil samples:
  - Described/classified
  - Peroxide pH
  - Incubation pH
  - Acid-base accounting



# Drought, recovery and ASS neutralisation











#### **ASS** neutralisation



At the time of the most recent sampling, both sites had been inundated for approximately 21 months



#### Waltowa

Changed from Sulfuric (field pH < 4) to Hypersulfidic (field pH > 4) within five months of inundation



Profile dry for greater than 2 ½ years



Profile saturated to 21 months

Dog Lake



Profile dry for greater than 2 ½ years

January 2011→ June 2012

Remained Sulfuric (field pH < 4) even after 21 months of inundation

**Profile saturated to 21 months** 



### **Slow ASS neutralisation**





# **ASS** monitoring summary



# Soil acidification hazard after reflooding (2010 to mid 2012)

- High
- Medium/High
- Medium
- Low/Medium
- Low

#### Presence of acidic soil

- Acidic soil
  (high acidification hazard)
- Acidic soil
  (medium acidification hazard)

# Time inundated following drought (by June 2012)

# = 36 months

\* = 30 months

No = 21 months symbol



#### **Conclusions**

- Drying can cause sulfuric soil conditions to develop around the Lower Lakes
- Following inundation, the neutralisation rate of acidic soil material is highly variable:
  - at some sites sulfuric conditions prevailed for less than five months,
  - other sites have remained sulfuric for more than 21 months
- Not all acidic soils have been neutralised
- Soil pH levels in many areas have not returned to pre-drought levels
- Acidification hazard remains high in many parts of the lakes



# Thank you

CSIRO Land& Water Dr Andrew Baker

t +61 8 8303 8539

E Andrew.k.baker@cslro.au

w www.csiro.au

