Native Vegetation Council Bushland Assessment Manual

Native Vegetation Council
1 September 2024

Native Vegetation Council and Department for Environment and Water Government of South Australia 1 Sept 2024

81-95 Waymouth St, ADELAIDE SA 5000 Telephone +61 (8) 8303 9777 Facsimile +61 (8) 8463 6999 ABN 36702093234

www.environment.sa.gov.au

Disclaimer

The Department for Environment and Water and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department for Environment and Water and its employees expressly disclaims all liability or responsibility to any person using the information or advice. Information contained in this document is correct at the time of writing.

With the exception of the Piping Shrike emblem, other material or devices protected by Aboriginal rights or a trademark, and subject to review by the Government of South Australia at all times, the content of this document is licensed under the Creative Commons Attribution 4.0 Licence. All other rights are reserved.

© Crown in right of the State of South Australia, through the Department for Environment and Water 2024

Preferred way to cite this publication

Native Vegetation Council (2024). Bushland Assessment Manual. Government of South Australia, Department for Environment and Water, Adelaide.

Download this document at https://www.environment.sa.gov.au/topics/native-vegetation/clearing/vegetation-assessments

Acknowledgement of Country

We acknowledge and respect the Traditional Custodians whose ancestral lands we live and work upon and we pay our respects to their Elders past and present.

We acknowledge and respect their deep spiritual connection and the relationship that Aboriginal and Torres Strait Islanders people have to Country.

We also pay our respects to the cultural authority of Aboriginal and Torres Strait Islander people and their nations in South Australia, as well as those across Australia.

Contents

Ack	Acknowledgement of Country				
1	Quick	reference guide	6		
2	Introd	duction	7		
3	Prelin	ninary office procedure	8		
4	Field procedure				
	4.1	Equipment	9		
	4.2	Naming vegetation associations in the application area	9		
	4.3	Completing the bushland assessment field inspection	16		
	4.3.1	General information about the datasheet	16		
	4.3.2	Listing plant species	16		
	4.3.3	Estimating cover of weeds and plant life forms	17		
	4.3.4	Native plant life forms	17		
	4.3.5	Native:exotic understorey biomass	18		
	4.3.6	Hollow-bearing trees	18		
	4.3.7	Fallen timber/debris	18		
	4.3.8	Mature Trees	19		
	4.3.9	Tree Canopy Cover Score	21		
	4.3.10	Naturally treeless sites	21		
5	Assig	ning a 'benchmark' vegetation community	22		
6	Filling	g in the bushland assessment scoresheet	24		
	6.1	Introduction	24		
	6.2	Landscape context scores	24		
	6.2.1	Percent vegetation cover	26		
	6.2.2	Block shape score	26		
	6.2.3	Remnancy and % native vegetation protected in IBRA association	27		
	6.2.4	Wetland or riparian habitat present	27		
	6.3	Vegetation condition scores	27		
	6.3.1	Native plant species diversity score	28		
	6.3.2	BCM community	29		
	6.3.3	Native plant life forms score	29		
	6.3.4	Weed score	29		
	6.3.5	Naturally treeless communities	29		
	6.3.6	Regeneration score	29		
	6.3.7	Other vegetation condition indicators	29		
	6.4	Conservation significance score	30		
	6.4.1	Threatened community score	30		
	6.4.2	Threatened flora score	30		
	6.4.3	Threatened fauna score	30		
	6.5	Total site scores	31		

	6.5.1	Unit biodiversity score	31	
	6.5.2	Total biodiversity score	31	
	6.6	Completing the scoresheet	31	
	6.6.1	Clearance site assessment	31	
	6.6.2	Proposed SEB site assessment	31	
7	Modified BAM for small sites			
	7.1	Rationale	32	
	7.2	Modified assessment method	32	
	7.2.1	Assessment of small sites adjoining other vegetation	32	
	7.2.2	Single assessment for multiple small sites	32	
	7.2.3	Modified bushland assessment scoresheet	33	
	7.2.4	Landscape context and conservation significance	33	
	7.2.5	Vegetation condition	33	
8	Subm	35		
	8.1	Applications for clearance or SEB area	35	
	8.2	Bushland assessment data storage	35	
9	Monitoring using BAM sites		36	
	9.1	Bushland assessment versus BCM	36	
	9.2	Revisiting the BAM site	36	
	9.3	Timing of repeat survey	36	
	9.4	Retaking photopoint photos	36	
	9.5	Interpretation of scores	37	
10	Appe	38		
	Appendix 1 Standard bushland assessment field datasheet (front and back)		38	
	Appendix 2 Bushland assessment < 0.5 ha (small site) field datasheet (front and back)		40	
	Appendix 3 South Australian vegetation structural formations		42	
	Appendix 4 Cover diagrams		43	
	Appendix 5 Plant life forms		44	
	Appendix 6 Benchmark scores for 1 ha quadrat		47	
	Appendix 7 Standard BAM scoresheet		83	
	Appendix 8 Modified BAM < 0.5 ha (small sites) scoresheet		90	
	Appendix 9 Remnancy and % native vegetation protected values		97	
	Appendix 10 Weed threat ratings		100	
	Appendix 11 Provisional list of threatened ecosystems in SA		114	
	Appendix 12 NatureMaps species search tool		121	
	Append	124		
11	Refer	ences	125	

List of figures

Figure 1	Example 1 of how a block might be split into vegetation associations (sites) and labelled	10
Figure 2	Photo representing site A1 in Figure 1	10
Figure 3	Photo representing site A2 in Figure 1	11
Figure 4	Photo representing site A3 in Figure 1	11
Figure 5	Photo representing site A4 in Figure 1	12
Figure 6	Photo representing site A5 in Figure 1	12
Figure 7	Photo representing site A6 in Figure 1	13
Figure 8	Example of how a block might be split into vegetation associations (sites) and labelled	14
Figure 9	Bushland assessment site labelling ('benchmark' vegetation communities in green text)	15
Figure 10	Examples of trees with different percentages of dieback	20
Figure 11	Example of approximately 50% tree canopy cover	21
Figure 12	Approximate areas covered by Bushland Condition Monitoring manuals, as described in text	23
Figure 13	Example Block A contains two sites (vegetation associations) which have the same landscape context s	score 25
Figure 14	Example of application area with two distinct Blocks (LC score assessed separately for each Block)	25
Figure 15	Example of cleared perimeter (yellow broken line) is 577 m of the total block perimeter (red line)	27
Figure 16	Examples of % veg remaining and % veg protected in SA IBRA Associations	28
Figure 17	Example of combining standard BAM with small site assessment method	32
Figure 18	Example where aggregation of small site data is possible	33

1 Quick reference guide

- 1. **Choose relevant method**. The Bushland Assessment Method (BAM) is intended to be used over an area of 1 ha. A modified method for small sites is used for areas less than 0.5 ha.
- 2. **View vegetation and terrain** (NatureMaps, Google Streetview) to help estimate time for field assessment.
- 3. In the field, and/or using land features (contours, watercourses) on NatureMaps, divide and map your application area ('Block') into vegetation associations (= sites). Label A1, A2, A3. Complete points below for each site.
- 4. **Determine location of representative quadrat(s)** (shape can vary).
- 5. **Take representative photo and record waypoint and photo direction**. The photo should be taken in a 'due south' direction whenever practical to do so. This will prevent the sun being an issue regardless of the time of day the photo is taken.
- 6. **Undertake assessment**. Front of datasheet = quadrat data, back of datasheet = incidental data from elsewhere in site. Large sites may warrant two datasheets from separate locations, averaged later. Complete datasheet on site (estimate 45 min. 1 hr for completion). Don't forget dominants and regeneration! If it's a 'naturally treeless community' do not measure the three tree attributes even if emergents are present.
- 7. **Assign relevant benchmark community**. This is the vegetation community within the Bushland Condition Monitoring manual for the region that most closely resembles the vegetation association under assessment. The chosen vegetation community provides 'benchmark' scores for evaluation of the site.
- 8. **Complete the BAM data report and excel scoresheets**. One site = one Excel file. In the excel scoresheet, the cells in light purple must be filled in with the data collected in the field (as per field datasheets) or from additional resources for conservation significance and landscape context scores (e.g. Atlas of Living Australia, EPBC Act Protected Matters Search Tool and NatureMaps). The remaining cells contain a formula and will calculate automatically. This includes benchmark community scores for vegetation condition.
- Submit Bushland Assessment data report, scoresheets and associated information to the NVB. The assessment data report and scoresheets must be provided to NVB electronically. This will enable the species lists to be uploaded to the Biological Databases of South Australia (BDBSA).

2 Introduction

The methods outlined in this manual are approved by the Native Vegetation Council (NVC) to be used for assessment of vegetation for applications under the *Native Vegetation Act 1991* and the *Native Vegetation Regulations 2017*.

The Bushland Assessment Method (BAM) for native vegetation is derived from the Bushland Condition Monitoring (BCM) methodology developed by the Nature Conservation Society of SA (NCSSA) (Croft *et al*, 2005-2009; Milne, T.I. & McCallum, B. [2012]; Milne, T.I. & Croft, T. [2012]).

The BAM is suitable for assessing vegetation that is located within the agricultural region of South Australia. This includes the EP, GA, H&F, KI, LC, M&R and N&Y Landscape Board Regions plus Port Augusta City Council and the Flinders Ranges Council. For assessments of vegetation in the rangelands of South Australia (South Australian Arid Lands and Alinytjara Wilurara Landscape Board Regions excluding Port Augusta City Council and the Flinders Ranges Council), the Rangeland Assessment Method should be applied. For assessments of scattered trees, the Scattered Tree Assessment Method is applicable.

The BAM method was developed for most vegetation assessments undertaken in the Native Vegetation Branch (NVB), including clearance/regulation applications, potential Significant Environmental Benefit (SEB) areas and Heritage Agreements. However it can be used to assess <u>any</u> vegetation for which biological/biodiversity value needs to be determined, including revegetation. The technique uses biodiversity 'surrogates' or 'indicators' to measure biodiversity value against benchmark communities. Please note, this assessment method can be simplified for certain purposes, such as monitoring of Council reserves (for more information on a simplified version, contact the NVB).

Users of the method **will generally be NVC Accredited Consultants.** Accredited Consultants will be provided with BAM training.

Each area to be assessed is termed an **application area** ('Block'), within which different **vegetation associations** ('sites') are identified and compared to NCSSA 'benchmark' vegetation communities. A representative 1 hectare quadrat is surveyed for each site.

For the BAM, three components of the biodiversity value of the site are measured and scored: *vegetation condition, conservation value* and *landscape context*. These three component scores are combined to provide **Unit Biodiversity Score** (per ha) and **then multiplied by the size** (hectares) of the site to provide a **Total Biodiversity** score for the site.

The NVC encourages users of this assessment method to consider if activities could impact sites of indigenous significance. Please refer to https://www.agd.sa.gov.au/aboriginal-affairs-and-reconciliation/aboriginal-heritage-registers-and-the-central-archive for further information.

3 Preliminary office procedure

Attempt to ascertain from aerial photography and native vegetation mapping the number of vegetation associations present to obtain a rough estimate of how long the field assessment will take. The exact number might not be evident until during or after the visit.

A site should ideally be larger than 0.5 hectares (unless the entire application area is that size or smaller). Refer to Section 7 for more information about small sites.

Large sites may warrant survey of more than one quadrat (with data averaged) to obtain an accurate data set.

Allow 45 minutes - 1 hour per standard quadrat. The time taken will vary considerably depending on the size of the site and complexity of the vegetation.

Consider viewing available information on Atlas of Living Australia or NatureMaps prior to the field visit to gain an idea of any species of conservation significance potentially present.

4 Field procedure

4.1 Equipment

You will need this manual, datasheets (Appendix 1 or 2), pencil, GPS, camera, large scale aerial photograph and plant bag.

4.2 Naming vegetation associations in the application area

You may be inspecting more than one application area (Block) on a property, for example there may be multiple clearance areas, or a clearance area and an SEB area.

- 1. Label the Blocks 'A, B, C...' (A Block being a contiguous area of vegetation under application)
- 2. Divide each Block into its constituent vegetation associations as follows (remember: 'SITE' = 'VEGETATION ASSOCIATION'):

Firstly, divide it according to its **overstorey** structural formation¹ and dominant species² (e.g. *Eucalyptus fasciculosa/E. cosmophylla* Open Woodland and *Eucalyptus obliqua* Woodland). An example with six vegetation associations is given in Figures 1 to 7.

Make further divisions according to **understorey** structure (note: this often infers condition) and species. For example, two vegetation associations may both be *E. obliqua* +/- *E. baxteri* +/- *E. cosmophylla* +/- *E. fasciculosa* Woodland, but one may be described as 'over *Hibbertia* spp. and *Xanthorrhoea semiplana* ssp. *semiplana*' and the other 'over sparse introduced grasses', reflecting different levels of degradation. The two are considered separate vegetation associations (= separate sites) (e.g. Sites A5 and A6 in Figure 1).

Essentially what you are doing is portraying the vegetation as it **currently presents** using terminology consistent with the recognised South Australian Vegetation Structural Formations (Appendix 3). To provide another example, a Fleurieu Peninsula Swamp site in good condition dominated by sedges with scattered tea-tree may be described as a 'Machaerina rubiginosa/M. tetragona +/- Juncus spp. Sedgeland with emergent shrubs' association (Site A1, Figure 1 and Figure 2) whereas the neighbouring more degraded gully may present as a 'Machaerina rubiginosa/M. tetragona +/- Juncus spp Very Open Sedgeland over introduced herbs and grasses with emergent ferns³ and shrubs' association (Site A4, Figure 1 and Figure 5), notwithstanding the fact that they were possibly once very similar.

¹ Plant life form of tallest layer plus height and projective foliage cover, e.g. <u>Low Open Shrubland</u>.

² E.g. *Melaleuca uncinata* Low Open Shrubland (only need to list dominant species).

³ Bracken Fern resulting from drier conditions posed by artificial drainage, and hence a symptom of degradation of the original association.

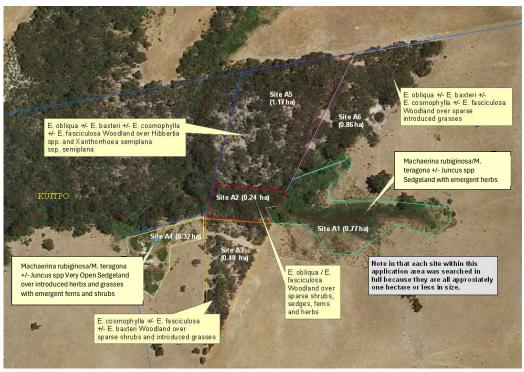


Figure 1 Example 1 of how a block might be split into vegetation associations (sites) and labelled

Figure 2 Photo representing site A1 in Figure 1



Figure 3 Photo representing site A2 in Figure 1

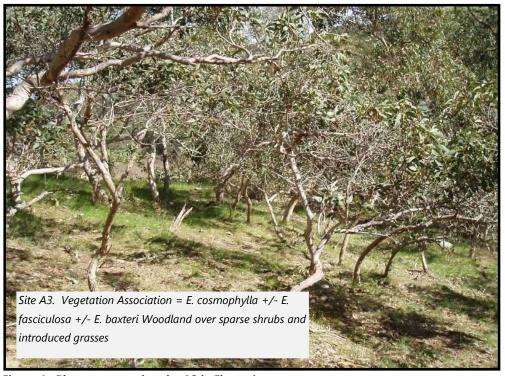


Figure 4 Photo representing site A3 in Figure 1

Figure 5 Photo representing site A4 in Figure 1

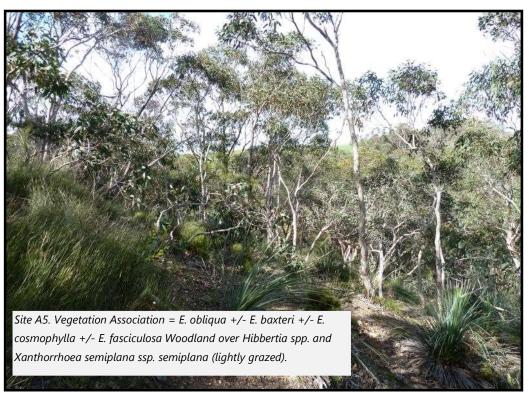


Figure 6 Photo representing site A5 in Figure 1

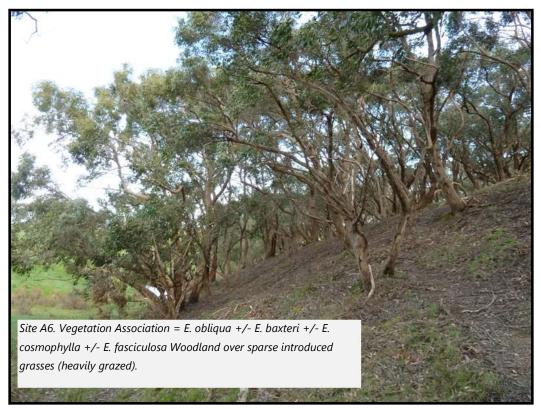


Figure 7 Photo representing site A6 in Figure 1

Some rules to ensure consistency between assessors:

- a) Ensure each site is greater than 0.5 hectares. (Exceptions if your entire application area is smaller than 0.5 hectares; if the site is distinct enough to warrant its own status rather than averaging the attributes into the surrounding vegetation, such as one dense patch of Oyster Bay pine within a Stringybark community.) Note that a site can be comprised of disjunct smaller pieces rather than contiguous vegetation, for example three perched bogs that are separated by woodland.
- b) A **large creek or river** with a substantial riparian corridor should be considered as a separate site (Figure 8). A **small or intermittent creek** should be combined with the surrounding vegetation into one site. **Gullies that feed into creeks or rivers** could be either combined with the watercourse to form one site or combined with the surrounding vegetation. The option chosen will depend on the nature of the gully is it deeply incised and shares species/structural features with the main watercourse? Or is it shallow and with more in common with the surrounding vegetation (compare a gully within a Stringybark forest that contains Mountain Gums and Manna Gums with one that contains Stringybarks just like the surrounding slope).
- c) **Edge effects:** If your site has pronounced edge effects, then you can either map the entire edge as a separate site, or you can combine with the interior and note on the datasheet. See below for placement of a representative quadrat for a site like this.
- 3. Number each vegetation association: 'Sites A1, A2, A3...B1, B2, B3....'

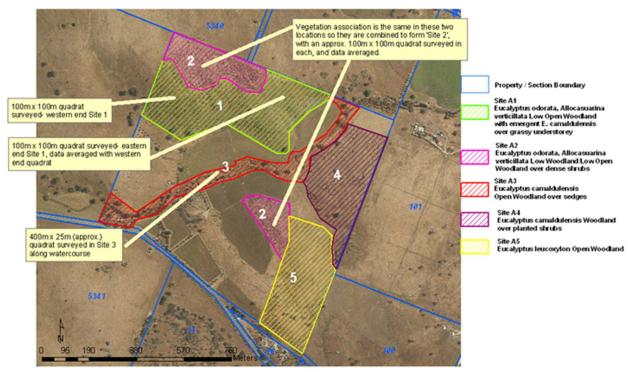


Figure 8 Example of how a block might be split into vegetation associations (sites) and labelled

- **4. Map the boundaries of the vegetation associations:** Map using either a GPS, by drawing lines on your aerial photo, or a combination of both. You can use NatureMaps layers (contours, watercourses) to help determine boundaries.
- **5. Label your first datasheet 'A1':** 'A' refers to the first application area/Block and '1' refers to the first vegetation association surveyed within it.
- 6. Determine one representative 1 hectare quadrat within A1: (Exception large sites may warrant two or more quadrats unless exceptionally uniform. In this case one datasheet is completed for each quadrat, which should be located some distance apart, and the quadrat data is averaged to represent the site. Label the two quadrats A1a and A1b. Record a GPS point (from which a photo will be taken) for your quadrat. The quadrat does not need to be 100 m x 100 m and does not need to be mapped or marked on the ground (unless you wish to), although the general shape can be noted. The quadrat should be placed in an area that represents the majority of the site. This may mean including one or more patches of variant vegetation if your site is uniform in a 'patchy' kind of way (see box below on 'lumping' and 'splitting'), or placing the quadrat such that it includes some edge vegetation.

Note that a 1 hectare sample size is much larger than what is statistically required for most of the measures recorded. therefore even if a site being assessed is slightly less than 1 ha in size, the results will still be statistically valid.

An example of the site labelling hierarchy is shown in Figure 9.

Deriving the 'benchmark' vegetation community for the vegetation association is described in Section 5.

7. Write a name for A1 (e.g. 'Mallee Box Open Woodland over sedges, grasses and sparse shrubs') next to 'Vegetation Association Description'. If a more detailed name/description is required for your later reporting you will be able to draw upon the data from the data sheet to help write it, as you will have detail on dominant understorey species, ground cover elements, habitat features, etc.

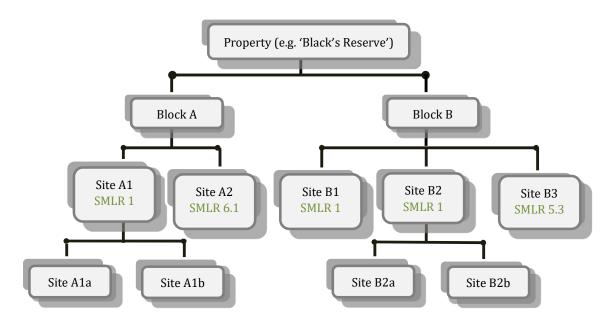


Figure 9 Bushland assessment site labelling ('benchmark' vegetation communities in green text)

DIVIDING YOUR APPLICATION AREA INTO SITES - 'LUMPING' VERSUS 'SPLITTING'

At what scale can the vegetation be considered 'uniform'?

Patchiness can be uniform if the 'patches' are small but regular (e.g. small patches of Native Pine scattered amongst mallee). But patchiness on a larger scale should be separated out into different associations (for example, repeating dune/swale/dune/swale vegetation would be separated into two sites [Site A1 = dune, Site A2 = swale]).

Try to calibrate the nature of your lumping/splitting with other Bushland assessors. Note that keeping your vegetation associations broad or general (i.e. lumping) may save time because fewer datasheets will be required. However, you could then have trouble filling in the boxes on the datasheet because effectively you are trying to average data in your head from non-uniform vegetation. 'Splitting' will result in lower scores for each individual site with respect to attributes such as plant species diversity than if the sites were lumped together. However, the impact of splitting on the Unit Biodiversity and Total Biodiversity Scores is minimal.

4.3 Completing the bushland assessment field inspection

4.3.1 General information about the datasheet

Remember: SITE = VEGETATION ASSOCIATION

For your 1 hectare quadrat you will need to obtain:

- a species list
- a photograph with waypoint
- scores for a number of attributes.

The scores are supposed to reflect observations averaged over the entire quadrat so the multiple boxes next to some attributes on the data sheet are there for you to adjust scores if they change as the inspection progresses.

The attributes in the boxes at the top of the datasheet can be filled in at any time, once you have a feel for the site. Weed cover rating and regeneration attributes, scored alongside the species in the species list, can be recorded and adjusted continually from the start of the inspection if that is easiest. The 'notes' section at the bottom asks for information that does not contribute to scores but may help score interpretation.

The front of the datasheet is only for observations pertaining to the quadrat. There is space on the back of the datasheet for general or incidental site observations (outside of quadrats) that may assist in the preparation of a written site description or assessment report. There is also space for notes relating to fencing, exclusions, additional photos, etc.

Relating each vegetation association to an NCSSA 'Benchmark' Vegetation Community can be done back in the office. Refer to Section 5.

4.3.2 Listing plant species

- Record all native and introduced plants that occur within the 1 ha quadrat. Record native
 species in the left column and weed species in the right. The centre column can be used when
 either column is filled.
- Survey for and record any threated plant species found within the site, including outside
 of the quadrat. Note, threatened species located outside the quadrat will not contribute to
 plant species diversity scores, but it will contribute to the Conservation Significance score of
 the site.
- Include annual species even when died back (if recognisable). Mark annuals that are not in full foliage with a #. Note there will be certain times of year when some species are not visible at all. For natives, this is corrected for in the Native Plant Species Diversity scoring. It is not necessary to include dead perennials, but if you do, note that they are dead.
- Mark dominant species 'd' = dominant. This will assist with any written vegetation association description.
- Collect plant species for which identification is uncertain, and mark 'v' = voucher. Be sure to give the plant a recognisable substitute name on your species list pending correct identification.
- Note 'p' for species that you can recognise as having been planted.

• Note 'R'⁴ next to all <u>perennial</u> native species for which you observe seedling or juvenile individuals (i.e. individuals that are not yet reproductive), with the exception of grasses, sedges and forbs. This noting of 'R' is important because it is used to calculate a regeneration score. It is also important to include planted seedlings. You may not be able to tell the difference between planted and naturally-regenerated plants, but that will not matter. If a particular species or location is displaying a very high number of regenerated individuals this can be commented on in the 'notes' section.

4.3.3 Estimating cover of weeds and plant life forms

Cover estimates (as per the 'cover rating' table - top centre of datasheet) are required for weed species and native plant life forms. Cover is estimated as 'percent projective foliage cover (PFC)'. This is the percentage of the site that would be shadowed by the foliage of the weed species or life form if the sun is shining directly overhead (Appendix 4).

- The diagrams in Appendix 4 may assist in estimating cover of canopy trees, but remember that the final figure has to account for the gaps between the trees. Covers of most species and life forms will be much lower than the figures presented in the appendix.
- Where a weed species is annual but visible at the time of inspection (e.g. Bridal Creeper), estimate the cover **as it appears** but mark with a # if the foliage is part annual dieback. This will assist future scoring and monitoring when undertaken at a different time of year, allowing better interpretation of changes in weed cover over time.

4.3.4 Native plant life forms

• **For native species only**, record PFC ratings as per the cover rating table. Record a dash for absent life forms and a # if a life form is represented substantially by species that are annual and not in full foliage. Total the numbers at the end and write at the bottom of the box.

Bear in mind that one species of plant may present as a different life form at various stages of its growth, e.g. what looks like a shrub now may eventually become a tree.

• You should record the plant life form as it appears at the time of your survey, unless it is a species listed in Appendix 5 (Life Forms).

Appendix 5 has been created because it is important that there is consistency in life form categorisation for commonly encountered species, yet there are some species on which people can't agree even when looking at the same specimen and referring to a definitive set of characters for all available life forms. Species in Appendix 5 are to be *always* categorised as instructed, regardless of presentation or stage of development. The appendix *only* includes plants which have a debatable life form *and* are commonly encountered (for example, Golden Wattle should *always* be listed as a tree.)

Importantly, Appendix 5 lists which Eucalypt species should be considered 'trees' and which should be considered 'mallee', regardless of form.

Height categories of life forms include the flowering heads and dead branches.

⁴ Use a capital, rather than a lower case 'r' which can be confused with a 'v'.

- The term 'sedge' is used to represent all non-grass species of tussock form, not just species within the family Cyperaceae, e.g. *Dianella revoluta* (Black-anther Flax-lily) and *Lomandra* spp. (Iron-grasses), *Typha* sp..
- Forbs are herbs that are not grasses or sedges.
- Include tree or shrub life forms in your plant life form list even when they have been identified as an 'emergent' life form and not scored for hollows and dieback.

4.3.5 Native:exotic understorey biomass

- Estimate the percentage of the total vegetative biomass of shrub and groundcover plants that is native, and select the appropriate category. Only include the parts of plants that are less than 2 m above the ground (i.e. ignore any biomass higher than 2 m above the ground).
- The measure of native:exotic biomass is not projective foliage cover but rather an estimate of the relative volume of native versus exotic understorey plant material (i.e. extent of bare ground is not taken into account).
- **Do** incorporate dead plant material, where attached to the ground, **if recognisable** as weed or native, but include a note on your datasheet to that effect. You may even like to note species to assist interpretation and ensure consistency with any return visits.
- **Do not** include leaf litter (plant matter no longer attached to the ground).
- **Do** include microphytic crust. Judgement is required in cases where native foliage overlaps exotic, for example an area of dense bracken fern over a ground layer of weedy grasses.

4.3.6 Hollow-bearing trees

Record the number of trees that contain small or large and small hollows within the 1 hectare quadrat.

• Use the hollow size/number categories on the datasheet to score this attribute.

4.3.7 Fallen timber/debris

Use the fallen timber matrix on the datasheet to assign scores for the two size classes of fallen timber and the leaf litter, then total these.

The size refers to that of the canopy trees. For example, where large Eucalypts occur over a subcanopy of Sheoak it refers to the size of the Eucalypt logs. In a shrubland with emergent trees (where the community is **not** considered 'naturally treeless'⁵), it refers to the size of the emergent trees, not the dominant shrubs.

If logs are present on the ground but there are no trees remaining, record this feature in the notes section – it may indicate a vegetation association that has undergone a major change from being treed to treeless, such as a Sheoak Open Woodland to a Grassland.

 $^{^{\}rm 5}$ If naturally treeless then fallen timber would not be scored at all.

4.3.8 Mature Trees

Use the Mature Trees matrix on the datasheet to assign a score for the density and health of mature trees.

The density of mature trees is an estimate of the percentage of mature trees present within the site as a proportion of what would be expected within the selected benchmark community. This only relates to trees species that constitute the canopy (being the upper most stratum of woody vegetation) in that community, not subcanopy species. In general, the name of the benchmark community lists the species and genera that typically form part of the tree canopy cover for that community. Include dead trees as part of the estimate of mature tree density.

Mature Trees are considered trees that are a minimum of 80% of the expected height of that species at maturity within that community.

Tree health is only assessed for mature trees and is represented by an assessment of the amount of canopy dieback, where 'dieback' refers to the proportion of the total possible canopy volume that is missing or is 'dead' (not just affected by lerp or other temporary condition). The following points, and photographs in Figure 10, may help in the estimation of dieback:

- When visualising the total possible tree volume, imagine the extent of the canopy if all branches and branchlets had foliage extending to their extremities.
- Be aware that some trees have a naturally sparse canopy cover, and are not necessarily any less healthy than a tree with a dense canopy cover.
- Lack of foliage on the lowest branches can be due to natural shading as the tree grows older and is considered to be normal if the tree is otherwise healthy, so do not include.
- If large dead stags are present on the tree (indicative of trunk/large branch failure at some time in the past) do not count this as dieback.
- Include total mistletoe biomass as dieback. When mistletoe is present, assume that the mistletoe has caused the death of an equivalent amount of host foliage. Although this is not always the case, it is considered that over the whole canopy it will average out to be roughly equal. Note that the part of the host branch terminal to the mistletoe attachment generally dies shortly after the mistletoe becomes established.
- Attempt to determine whether dieback is permanent or temporary by checking for the
 presence of insects and epicormic growth. Lerp, grasshoppers, drought and fire are usually
 temporary. Scratch the bark to look for green cambium and consider bark condition. Only
 apparently permanent dieback should be taken into account.

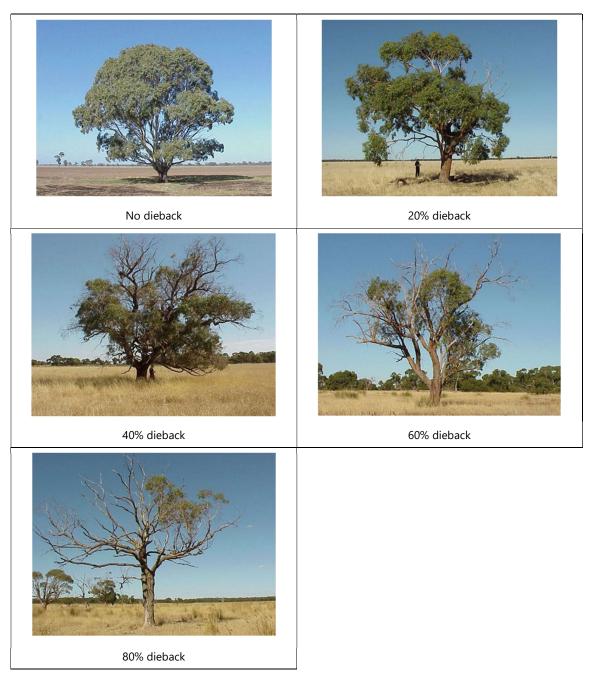


Figure 10 Examples of trees with different percentages of dieback

4.3.9 Tree Canopy Cover Score

• Estimate the percentage of the area covered by the canopy of tree species that form part of the canopy or subcanopy of the vegetation community. This represents all the area that is immediately below the canopy of the trees and includes all the area within the canopy. This relates to any plants of the species of the canopy or subcanopy, irrespective of age. This is different to Projected foliage cover, in that all the gaps within the canopy are included as part of the canopy cover. Figure 11 shows an example of approximately 50% Tree Canopy Cover.

Figure 11 Example of approximately 50% tree canopy cover

4.3.10 Naturally treeless sites

- Where a site is identified as 'naturally treeless', do not score the tree attributes (Tree Health,
 Hollow-bearing Trees and Fallen Timber/Debris), even when emergent trees are present.
 Naturally treeless sites are defined as those which match to a 'naturally treeless' benchmark
 community in Appendix 6 the communities listed in BLUE. The species diversity and lifeforms
 scores will still benefit from the presence of emergent trees.
- For naturally treeless sites, to compensate for the exclusion of tree attributes, a correction factor is applied (the score is multiplied by 1.29).

5 Assigning a 'benchmark' vegetation community

A **Vegetation Community** for the purposes of this method is a broadly defined vegetation type, grouped mainly by overstorey and understorey structural formation⁶, that includes a number of more specific vegetation associations under its 'umbrella'.

The Benchmark Vegetation Communities used in NVC Bushland Assessment have been adopted from NCSSA's Bushland Condition Monitoring manuals. They have been described as 'intact' or 'pre-European' communities, next to which we can compare our sites, hence the term 'benchmark'. It is acknowledged that vegetation is in a state of flux, therefore a 'benchmark state' should not be thought of as an 'end point', but rather a more stable state against which to make comparisons.

There are currently five hard copy **Bushland Condition Monitoring Manuals**⁷:

- Southern Mount Lofty Ranges (SMLR)
- SMLR supplement 'Coastal Vegetation Communities of the Southern Mt Lofty Ranges'
- Northern Agricultural and Yorke Peninsula (NA & YP)
- Murray-Darling Basin (MDB) and
- Eyre Peninsula (EP)

There are two additional electronic manuals: South East (SE) and Kangaroo Island (KI).

The regions represented by the manuals are described in each manual and approximately as represented in Figure 12. Shapefiles are available from NVB to help determine boundaries.

Sites located close to manual boundaries may correspond equally well (or better) with a benchmark from another manual.

After examining the site, use the manuals to assign a Vegetation Community Type, and record it on the **Bushland Assessment Data Report** and in the relevant Excel Scoresheet.

Note: do not use the benchmark figures in the NCSSA manuals as they relate to 30m x 30m quadrats rather than 1 hectare.

⁶ Note that the terminology and way of grouping vegetation communities differs from that under the National Vegetation Information System (NVIS). NVIS is not used in the BAM.

⁷ Available from the Nature Conservation Society of SA (note: some editions may be out of print)

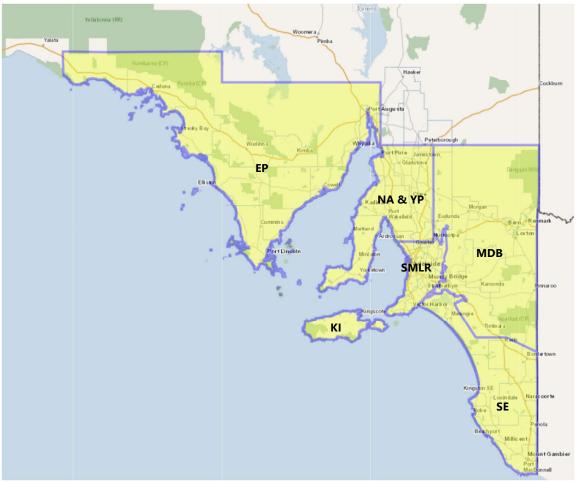


Figure 12 Approximate areas covered by Bushland Condition Monitoring manuals, as described in text

6 Filling in the bushland assessment scoresheet

6.1 Introduction

BAM data is entered into a Bushland Assessment Excel scoresheet (workbook) which consists of several worksheets relating to landscape context, vegetation condition and conservation status, plus current and proposed protection and management of the site. There is a scoresheet for the standard BAM (Appendix 7) and another for small sites as per Section 7 (Appendix 8).

The scoresheet can be used to assess a clearance area or a proposed SEB area. For example, for an assessment for a clearance application, the scoresheet will calculate the SEB points that need to be provided to offset the clearance. If the assessment is for a proposed SEB area, then the scoresheet will calculate the SEB points of gain provided by the site as per formulas outlined in the NVC's Guide to Calculating a Significant Environmental Benefit ('SEB Guide') (NVC 2024).

The cells in light purple must be filled in with the data collected in the field (as per field datasheets) or from geographic mapping tools. After filling in these cells, excel automatically calculates the scores, including benchmark scores.

Each application area (Block) will require the completion of a Bushland Assessment Scoresheet for each vegetation association present.

6.2 Landscape context scores

The Landscape Context Score is determined from values associated with the entire Block and is completed in the first Excel worksheet titled '**Block**'. Each subsequent worksheet within the scoresheet relates to values of the relevant site within the Block. The overall Landscape Context Score for a site will be auto filled from the values entered into the 'Block' worksheet.

It is necessary to fill out all fields and insert the map into each scoresheet used for an application.

Landscape context scoring has been adapted from NCSSA's Rapid Assessment version of BCM, based upon Oliver and Parkes (2003). Landscape context is included to allow remnants that are large, well-buffered and/or are providing important corridor habitat to be recognised as important, regardless of condition. The Landscape Context Scores pertain to the block that is under application and must be an area of contiguous vegetation. Note that 'contiguous' is defined as 'within 30m'.

A Block may include one or more sites (vegetation associations), in which case each site will receive the same Landscape Context Score (Figure 13). If vegetation that is being assessed involves separate disconnected areas of vegetation (separate Blocks), then the Landscape Context Score will be assessed separately for each (Figure 14).

The following information in the following sections can be entered directly into the Block worksheet and the scores will be automatically calculated.

Figure 13 Example Block A contains two sites (vegetation associations) which have the same landscape context score

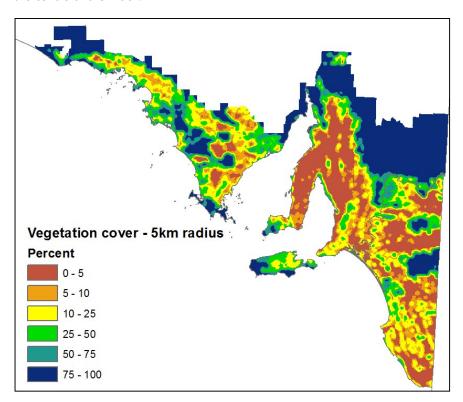


Figure 14 Example of application area with two distinct Blocks (LC score assessed separately for each Block)

6.2.1 Percent vegetation cover

The percent vegetation cover is a surrogate for connectivity by measuring the amount of remnant vegetation that is left in the local landscape. This has been determined by measuring the percentage of vegetation that is contained within a 5km radius of any one point. Higher scores are given to areas of vegetation that are in parts of the landscape with intermediate levels of vegetation cover. It's these areas in the landscape that are likely to be most impacted by any changes in vegetation cover.

Use the layer – *Native Vegetation Areas – Mean Patch Area within a 5 km Radius* on NatureMaps. Determine the percent of vegetation that occurs within a 5km radius of the site, this value is taken from the centre of the Block.

6.2.2 Block shape score

This is a measure of **cleared** perimeter to area ratio. Determine the perimeter (metres) of the Block of vegetation for which adjacent land is cleared of native vegetation. Then determine the area of the Block (ha). The perimeter measurement is converted into kilometres by dividing by 1000 and the area is converted into square kilometres by dividing by 100. The cleared perimeter (km) is divided by the area (km²) to provide the ratio. These measurements can be determined using NatureMaps.

An example is given in Figure 15. The cleared perimeter is 577 m (=0.577 km). The red polygon represents the area of Block A and is 3.9 ha (0.039 km 2) in size. Therefore the 'cleared area to perimeter ratio' is 0.577 divided by 0.039 =14.79.

The cleared perimeter estimate should be verified on ground, to ensure that adjoining land is not native grasslands.

Figure 15 Example of cleared perimeter (yellow broken line) is 577 m of the total block perimeter (red line)

6.2.3 Remnancy and % native vegetation protected in IBRA association

Identify the IBRA Association in which the Block is located. NatureMaps contains a layer labelled *IBRA Association SA 7.0* which provides the name and geographic extent of each IBRA Association (Figure 16).

In some northern areas of SA, the IBRA associations were not updated in version 7.0. For these areas, use Version 6.1 which is available as a downloadable layer here:

https://data.environment.sa.gov.au/NatureMaps/Documents/LANDSCAPE IBRAAssociation61 shp.zip

Entering the IBRA Association name into the Block worksheet automatically shows the value for % native vegetation remaining and % vegetation protected in the IBRA Association. Alternatively, IBRA Associations and the corresponding figures are contained in Appendix 9 of this manual. They are also shown in the Naturemaps layer labelled **Association Veg Cover SA 7.0**.

6.2.4 Wetland or riparian habitat present

Record if a site contains a riparian zone or swamp and/or wetland. In some cases the riparian zone or corridor will comprise the entire site. In others it will be a very small part of a larger site.

6.3 Vegetation condition scores

Vegetation condition is scored against benchmarks, with the highest vegetation score possible being 80 points. The score is derived from factors such as species diversity, native plant form diversity and biomass, regeneration, habitat features and weed threat. The following information can be entered directly into the scoresheet and the Vegetation Condition Score for the site will be automatically calculated.

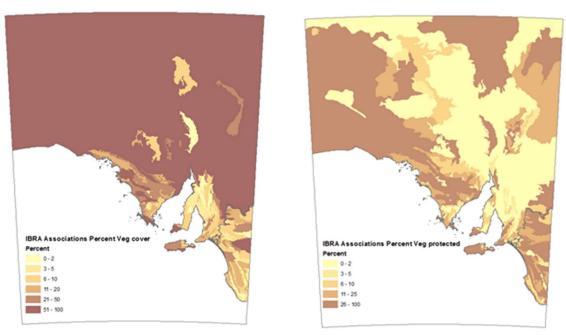


Figure 16 Examples of % veg remaining and % veg protected in SA IBRA Associations

6.3.1 Native plant species diversity score

On the **Flora** and **Fauna** worksheets respectively, enter all flora species (both native and introduced) and fauna species that are threatened or introduced that are found in the relevant vegetation association. For each native perennial species that was recorded as regenerating within the quadrat, mark as 'yes' in the 'Regen' column (see also the 'Regeneration Score' section).

Only the number of native plants recorded in the quadrat will be counted to determine plant species diversity. If you have surveyed in Spring, record which are annual herbaceous species that are only present and observable during spring. These species will not count towards species diversity. This is in recognition of the fact that annuals may have been counted that would not be visible at other times of the year.

Given the variation in climatic conditions in different regions, when determining if the survey has been undertaken during Spring time, the following should be applied:

- SMLR1-SMLR7 Sept 1 to Nov 30
- SMLR8 Sept 1 to Nov 30
- KI7.7 Sept 1 to Nov 30, KI all other communities- Sept 1 to Nov 30
- SE6.8 Sept 1 to Nov 30, SE all other communities- Sept 1 to Nov. 30
- NA1, NA2, NA4, NA5, NA6, NA7, YP3 mid-June to mid-Sept
- NA3, EP5, EP6, EP7, EP8, EP9, EP10, EP11, mid Aug to late Oct
- NA8, NA9, NA10, YP5, YP7, YP8 mid-June to mid-Sept
- YP1, YP2, YP4, YP6, EP1, EP2, EP3, EP4, all MDB, NA2 in MDB region mid-June to mid-Sept
- EP12, EP13 mid-Aug to mid-Oct

On the fauna sheet, ensure that either 'past record' or 'observed' is marked 'yes', which allows new observations to be loaded into the BDBSA.

6.3.2 BCM community

Values will not calculate unless the relevant BCM Community is chosen from the drop down list on the 'Site – Scores' worksheet in the Vegetation Condition Scores section.

6.3.3 Native plant life forms score

Enter the Native Plant Life Form values from the field datasheet into the scoresheet. The total will be automatically calculated.

6.3.4 Weed score

Using the weed covers that you wrote next to each weed species on the datasheet, and the list of Weed Threat Ratings for each region in Appendix 10, select the five weeds that score the highest combination of cover and invasiveness (i.e. highest Cover x Threat) and type them into the scoresheet. The scoresheet will calculate a Weed Cover x Threat total from your figures.

In many cases there will be a number of weeds that score the **same** Cover x Threat total and you will need to choose which to include in the 'Top 5'. **Choose perennials over annuals or note any reason for preferentially listing an annual** (i.e. it could be a Weed of National Significance or one that is the focus of management for the site).

6.3.5 Naturally treeless communities

If the community is **naturally** treeless or is not benchmarked for regeneration, tick the checkbox to make the necessary adjustment to the score.

6.3.6 Regeneration score

If the community has no benchmark figure for regeneration, a correction factor of 1.24 will be applied. For example, there is no regeneration benchmark for communities that depend on river or tidal flows to regenerate.

Note that in a revegetation setting, your plantings 'mimic' regeneration and are thus included in the count if they are not yet mature. It is recognised that these plantings **may not be self-perpetuating**, and ongoing regeneration may not occur. This will be reflected in future scoring as the plantings become mature and the seedling/juvenile count diminishes.

Remember that planting is equivalent to weed control – each is a way of trying to progress the vegetation toward its benchmark community and therefore needs to be scored as if it was a naturally-occurring process. **The scores reflect the current state of the vegetation** – the **explanations for the scores** changing (or not changing) might include reference to planting or other management (or non-management).

6.3.7 Other vegetation condition indicators

The values for native: exotic understorey biomass, fallen timber/debris, hollow-bearing trees, mature tree score and tree canopy cover score can be entered directly into the scoresheet from the field datasheet.

6.4 Conservation significance score

6.4.1 Threatened community score

Refer to the DEW provisional list (Appendix 11) and the *Environment Protection & Biodiversity Conservation* (EPBC) *Act 1999* to decide if the site contains a state or national 'threatened ecosystem' or 'threatened ecological community'.

See map of South Australia for information on areas that may contain an EPBC Act Threatened Ecological Community at http://www.environment.gov.au/biodiversity/threatened/communities/sa). You may need to refer to EPBC criteria. Note that the state listings do not specify a minimum size for a remnant to be classified.

This score refers to the site as it currently presents, not its benchmark state. A site that is in poor condition in comparison to its benchmark state may not qualify even if it supports the listed overstorey and/or key species. If an endangered or vulnerable ecosystem or ecological community is present, tick the appropriate checkbox in the 'Site – Scores' worksheet in the Conservation Significance Score section.

6.4.2 Threatened flora score

All plant species of National and State conservation significance **observed within the site during the inspection (not just the quadrat)** are used to calculate the Threatened Flora Score. Historical records cannot be used because the score is supposed to reflect the state of the site **at the time of the inspection**. Note: if a plant species has both a State and National rating, only the National rating is counted.

To assist field data collection, it is recommended that a search of historical plant species records for the property and its surrounds is carried out using NatureMaps (Appendix 12) and/or Atlas of Living Australia. This will alert you to the potential presence of plant species of conservation significance in the quadrat before the field visit is undertaken. Depending on the purpose of the assessment, it may also help with reporting of potential impacts on the site and surrounds.

6.4.3 Threatened fauna score

The fauna species score is based on direct observations plus 'habitat suitable'.

Direct observations – Use the fauna species **observed during the inspection** to identify species of conservation significance that use the site (this includes any observation within the site even if not within the quadrat).

Records – Identify any observations of species of conservation significance that have been recorded in the past within a close proximity to the site. Use the Biological Database of South Australia (BDBSA), Nature Maps (Appendix 12) or Atlas of Living Australia (ALA) records as well as the EPBC Act Search Tool (Appendix 13) to identify threatened species that have been recorded within a 5km radius of the site. For BDBSA, NatureMaps or ALA, only use records that were recorded during or after 1995, within 5 km of the site and locational reliability <1 km. For EPBC Act Search Tool, only record species that states "species or species habitat known to occur within area". This information can be further supplemented where appropriate with expert opinion and local knowledge.

Excluding species - If a site is in close proximity to a water body (ocean, lake or river), then species that occur only in or on the water should not be included it in the list of threatened fauna species.

If the occurrence of a species is determined to be unlikely for vegetation being assessed and the Native Vegetation Branch supports this assessment, then these species can also be excluded.

Assigning a score – if a fauna species has both a State and National rating, it will only receive as score for the National rating.

6.5 Total site scores

6.5.1 Unit biodiversity score

The scores that a site receives for Vegetation Condition, Conservation Significance and Landscape Context are multiplied together in order to provide a Unit Biodiversity Score (UBS) for the site. This should be considered a per hectare score. The formula that is applied is as follows:

Unit Biodiversity Score = Vegetation Condition x Landscape Context x Conservation Significance

This formula ensures sites that are of conservation significance receive a proportionately greater score. This is intended to recognise the importance of these areas for conservation and the increased risk of decline and extinction as a result of any permitted impact. It also recognises the difficulty in replacing such areas, species and communities given that they are often scarce or in decline.

6.5.2 Total biodiversity score

Given that the Unit Biodiversity Score is a per hectare score, in order to determine the Total Biodiversity Score, the UBS is multiplied by the area (in hectares) of the site.

6.6 Completing the scoresheet

Ensure the photo of the site is inserted into the worksheet and that the GPS reference is accurate.

6.6.1 Clearance site assessment

In order to complete the Bushland Assessment Scoresheet for the purposes of assessing a proposed clearance application and determining the SEB points required, the following values need to be entered in the 'Clearance Assessment Summary' worksheet (refer to the SEB Guide):

- Loss Factor
- Loadings for clearance of protected areas
- Reductions for rehabilitation of impact site
- Economies of Scale Factor and
- Mean Annual rainfall for the site (mm).

For the relevant information to complete these attributes, refer to the SEB Guide.

6.6.2 Proposed SEB site assessment

When using the BAM method to evaluate the SEB points provided by a proposed offset (SEB) site, the assessment should indicate whether the level of protection and management of the site differs from standard expectations as outlined in the SEB Guide.

Answer the list of questions on the 'SEB Assessment Summary' tab. Answering 'no' to a question indicates that a site meets standard assumptions about protection and management. Answering 'yes' to a question means that the site is not 'standard' and the values will be adjusted as per the section in the SEB Guide titled 'Step 4 Adjust SEB points of gain'.

Questions relate to the site level, not the block level (although some will be answered the same for every site within a block). Consult with the NVB if you are unsure how to answer a question for a site.

7 Modified BAM for small sites

7.1 Rationale

The standard Bushland Assessment method becomes less applicable and more difficult to apply for smaller sites (less than 0.5 ha) or for long narrow sites (less than 5 m wide). In such situations the benchmarked communities, which is based on a 1 hectare site, becomes less comparable. Additionally for long narrow sites, vegetation can be highly variable over the length of the site and it is difficult to survey a quadrat that is of a sufficient size (e.g. for a site that is 2.5 m wide, the quadrat would need to be 2 km long in order to survey an area of half a hectare). Accordingly, a "Modified Bushland Assessment Method" has been developed for sites <0.5 ha.

The method follows the same principles as the Bushland Assessment method, however for the purpose of the vegetation condition component of the assessment, rather than applying a quantitative benchmarking approach, or more subjective expert opinion-based approach is used. The scores are still determined relative to what would be expected in vegetation of that community in good condition (as per the benchmarked community condition), but based on the assessor's opinion rather than comparing it to a defined benchmarked score.

7.2 Modified assessment method

7.2.1 Assessment of small sites adjoining other vegetation

For small application areas of <0.5 ha, first attempt to use the standard Bushland Assessment Method if there is similar *contiguous adjacent* vegetation available to make the site up to 1 ha (subject to access if on an adjoining property). Adjoining vegetation may be present where the assessment area is part of a larger vegetation patch, or where it adjoins a road reserve etc.

7.2.2 Single assessment for multiple small sites

If an application contains several sites of varying size, then depending on the size of the sites, the application may consist of both a standard assessment and a small site assessment (Figure 17).

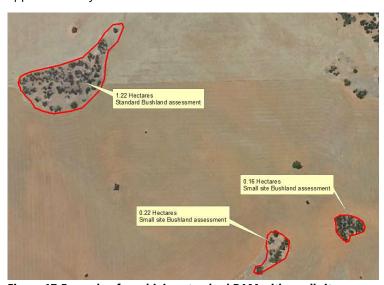


Figure 17 Example of combining standard BAM with small site assessment method

If there are multiple small sites (each less than 0.5 ha) within a close proximity and they are in similar vegetation condition, then the sites can be aggregated and assessed with just the one assessment (Figure 18).

In such a circumstance, the attributes can be determined by combining the features of all the sites together. For example, the species list and species diversity, native plant life form, regeneration, etc., the assessment can determine the values based on all the small patches combined together, rather than assessing each individually.

Figure 18 Example where aggregation of small site data is possible

7.2.3 Modified bushland assessment scoresheet

Data collected as part of a small site assessment should be entered into the 'Modified Bushland Assessment (less than 0.5 ha) Scoresheet'.

7.2.4 Landscape context and conservation significance

The assessments of Landscape Context and Conservation Significance are undertaken as per the standard Bushland Assessment.

In relation to landscape context, the size of the **Block** and **cleared perimeter** can be determined by adding the area and perimeter of all the individual sites together if data for several small sites are being aggregated.

7.2.5 Vegetation condition

Native: Exotic understorey biomass, Falling Timber/debris, Hollow bearing trees, Mature Tree and Canopy Cover are assessed as per Bushland Assessment and as described in the small site datasheet (Appendix 2).

Plant species diversity, Native Plant life forms, Regeneration and Weed Scores are assessed as described in the Modified Bushland Assessment (less than 0.5 ha) Scoresheet (Appendix 8) and in accordance with the following:

- Plant Species diversity Once a species list is complete for the site and the number of plant species is known, estimate as a proportion of the number of flora species present relative to the number that would be expected in vegetation of that community in good condition (the benchmarked community).
- Native Plant Life forms Select the category that most closely represents the vegetation within the site. In particular, giving consideration to the level of structural diversity that would be expected in vegetation of that community in good condition.
- Regeneration Select the category that most closely represents the vegetation within the site.
 In particular, giving consideration to the level of regeneration that would be expected in vegetation of that community in good condition.
- Weed Scores Record the presence of any weeds declared under the Landscape SA Act 2019
 within the site and assign a cover rating as per the field datasheet as an aggregate of all the
 declared weeds recorded.

Record the presence of any environmental weeds within the site and assign a cover rating as per the field datasheet as an aggregate of all the environmental weeds recorded. Environmental weeds are considered introduced plants with the capacity to invade and exclude native species from bushland. This typically includes species with a BCM weed threat rating of 3, 4 or 5 as per Appendix 10.

8 Submission of data

8.1 Applications for clearance or SEB area

If you are using the BAM as part of an application to the Native Vegetation Council, the excel scoresheets should be provided along with a Data Report (in relevant NVC template) that interprets the data and resultant scores. The template will outline what information needs to be provided and in what format.

Ensure you are using the most up to date templates and scoresheets as some calculation factors change annually.

8.2 Bushland assessment data storage

Scoresheet data will be stored within DEW information systems including the BDBSA. Information about the BDBSA is available on the DEW website:

https://www.environment.sa.gov.au/topics/science/information-and-data/biological-databases-of-south-australia

9 Monitoring using BAM sites

9.1 Bushland assessment versus BCM

The BAM and Bushland Condition Monitoring method both include condition scores that are measured against NCSSA benchmarks. Bushland Assessment uses an informal 1-hectare sample quadrat, whereas BCM uses a permanently marked 30m x 30m quadrat. A different set of benchmark scores was developed for each sample size. While BCM and BAM both recognise the relevance of conservation and landscape context attributes to overall biodiversity value, BAM differs from BCM in that it more formally integrates these into the scoring system. BAM uses some less precise vegetation condition measures than BCM as a trade-off for available assessment time. BCM includes a section on individual tree measurements.

For general projects where the most appropriate assessment method is to be determined, a consideration of the *purpose* of the assessment will govern whether BAM, BCM, or another assessment method will be the most suitable. BCM may be more appropriate for tracking revegetation progress and the success of certain management techniques.

9.2 Revisiting the BAM site

If revisiting a BAM site for monitoring or other purposes, consider the following when locating the quadrat.

Each datasheet is supposed to cover an approximate 1 hectare quadrat, with the dimensions of that hectare governed by the nature of the vegetation combined with practical considerations such as access. Each quadrat is considered to represent the entire site, so theoretically return visits do not have to traverse the exact area of the original survey. It is recommended, however, that the original waypoint is used as a reference when planning a return visit, and repeat searches are undertaken in the vicinity of this waypoint where possible.

An application area should not be re-mapped into a different combination of sites to the original mapping, even when the vegetation has changed significantly e.g. where a previously grazed site now resembles its neighbouring ungrazed area after stock has been excluded for ten years. Re-mapping takes away the opportunity to measure change from the originally-surveyed condition.

9.3 Timing of repeat survey

Ideally a revisit should occur at a similar time of year to previous surveys. This will not always be possible, so data should be recorded on datasheets to help interpret changes that may be due to rainfall.

9.4 Retaking photopoint photos

The photopoint photo must be re-taken in the same location and in the same direction as for the original survey. This will illustrate change over time.

Photopoints should be set up to be taken in a 'due south' direction whenever practical to do so. This will prevent the sun being an issue regardless of the time of day the photo is taken.

9.5 Interpretation of scores

Notes should be taken (as discussed throughout this manual) of the presence of annual weeds and their possible influence on the Weed, Unit Biodiversity and Total Biodiversity Scores. Assessors may need to refer back to the datasheets from previous visits to assist with interpretation of changes in weed cover, regeneration/replanting and other monitoring data, particularly where the associated scores are going to be guiding management.

While Bushland Assessment condition scores are presented as scores against a benchmark (i.e. the higher the score, the closer the vegetation resembles the benchmark community condition), it does not mean that all low scoring sites have low value. Measurement against a benchmark is a general concept that allows for comparisons of different vegetation types and monitoring of success against benchmarked-derived goals. There will be cases where other factors may influence biodiversity value, e.g. a grassland community modified from its original woodland and scoring low against benchmark scores but now providing important habitat for grassland birds. In a management sense, the modified goal state for this community, based on the intended purpose of conserving and managing it into the future, needs to be defined so that any moderating factors on the score and its progression over time can be considered.

10 Appendices

Appendix 1 Standard bushland assessment field datasheet (front and back)

Native Plant	Rating			Cover Kating	_				og size = that o	of canopy sp	pecies (+ em	ergent		Native:exotic	
Life Forms include height of flow				not many, cover <1%		species if p		_	1 16				_	Understorey	1 1
dead branches, # = li	fe for	rm res	o'd	Covering 1 - 5%	2	Log dian		None	<1 per 10 ca	nopy trees	≥1 per 10	canopy trees	Score	Biomass include dead ma	towiel
largely by annuals no	ot in	full fo	liage		3	Trunk siz		0	0.5			3	<u> </u>	if attached &	iteriai
Trees >15 m		П		Covering 26-50%	4	Litter	zea	Little or	Sparse and		Danca and	more or less	Saara	recognisable as	native
Trees 5 - 15 m		П		Covering 51 – 75%	5	Litter		none	litter l			s litter layer	ocore	% native	
Trees < 5m		П		Covering > 75%	6	Litter		0	0.5			1		80%+	5
Mallee > 5m	П	П												40-80 20-40	3
$Mallee \le 5m$		П		Hollow-bearing Tree hollows = <5cm, large h			M	ature Tre	e Score			'Treele	ss'	10-20	2
Shrubs > 2 m	П	П		>6cm)								in its		5-10	1
Shrubs 0.5–2m		П		None		0		lature Tre		6 Tree Ca		natura	ı	্	0
Shrubs < 0.5 m		П		Sm hollows only		1		ensity (tre er ha)	es <30	30 - 70		state (refer t	.	Tree Canopy	
Forbs				Large +/- sm hollows	in =5</td <td>2</td> <td>P</td> <td>er na)</td> <td>96</td> <td>96</td> <td>96</td> <td>manua</td> <td></td> <td>Cover</td> <td></td>	2	P	er na)	96	96	96	manua		Cover	
Mat Plants		П		trees/ha				one preser	t 0	0	0	Y/N	~·	50%+	5
Grasses >0.2m		П		Large +/- sm hollows in 6-10 trees/ha		3		- 25%	2	1	0			25 - 50 10 -25	4
Grasses ≤ 0.2m		П		Large +/- sm hollows	in 11-	4		5 – 50%) – 75%	6	3	4			5 - 10	2
'Sedges' > lm		П		20 trees/ha				= 100%	8	7	6			2.5 - 5	1
'Sedges' ≤ lm	П	П		Large +/- sm hollows trees/ha	in >20	5								<2.5	0
Hummock grass		П		uees/na											
Vines,scramblers		П		Soil Type:				Aspec	:t:			O/S A	ve. H	t:	
Mistletoe		П													
Ferns		П		Vegetation Asso	ociatio	n Descr	ipti	on:							
Grass-trees															
Total		П					•••••	•••••					•••••		•••••
	ш	ш	_	Recorder/s:							Referenc	e No.			
				Accorder/s	•••••		•••••				reiei ene				
Bushland A	Ass	ess	m	ent Site:	Da	te:	2	Zone:	Datu	m:	E:	N	:	Ph dir'n	:

	d=domi	nan	t, o=outside quadrat, v=voucher, p=	plan	ted, F	R=re	gen	(perennials).				
Native spp. (cover categories not required, but optional for dominants)				С	С			Weed spp. (cover category required for all)	С	С		F
	+						_	, ,				ł
												İ
	+											+
	+						_					ł
												İ
	++											+
	++											ł
												İ
	+					\Box			Н			ļ
	8 8		Substantial rock outcrop or cove	r Y/N	l						<u> </u>	ŀ
	5 %		Substantial moss and/or lichen Y		8							
	8 80		Are long-dead trees present? Y/I		8						No.	
	6 20		Optional tree health information estimates species by species:	: Die	back				÷ ,		16 :	
	33											
	20								8 0		X.	Γ

The tables below are for data pertaining to the **site in general** (i.e. can be **external** to the surveyed quadrat, such as species only encountered when moving between quadrats. Note, weed covers are not required.

Native spp	Weed spp	1
	1 1 2	+
		╄
		1
	1 1 1 1	Т
		+
		┸
1111		1
		$^{+}$
1111		╁
	3 3 4 69	┸
		1
		Т
		┿
		┸
		1
* 1	2 2 2	T
		┿
		╀
1111		1
		Т
		+
34 4 4 2	1 1 2	┸
		1

No.	Description	Waypoint
1	Photo representative of surveyed quadrat	
	77 17	
	1	
	1	-
	+	+
	+	
	1	
	+	

Notes (fencing/exclusions/other issues)						

Appendix 2 Bushland assessment < 0.5 ha (small site) field datasheet (front and back)

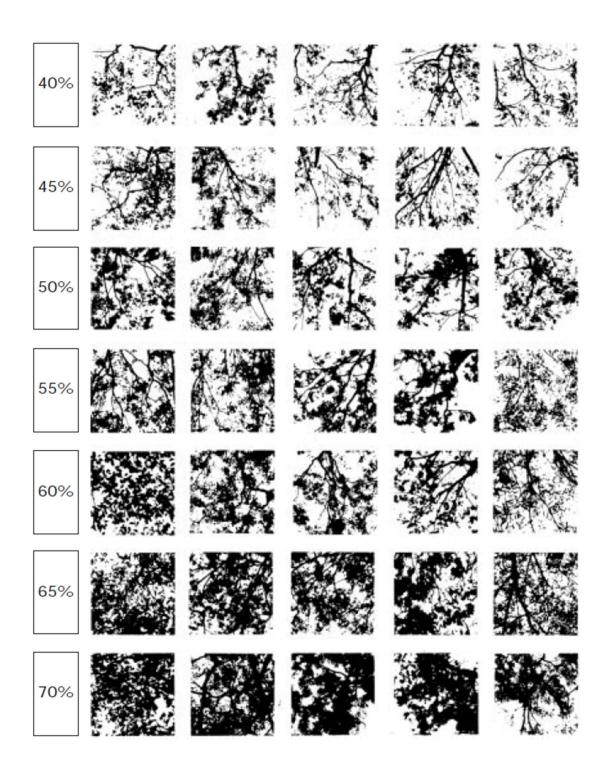
Native Plantille form		(Translate)	i i.t a.t.	ural state (r			2 37.07	\neg		Nativ	ecexotic	_
All strate of vegetation heavily impacted and native								\perp			rstorey	
vegetation represented by only scattered plants		Fallen Timbe		og size – that o	of canopy	species (+ e	emergent			Biom		
All strata of vagetation impacted with limited structural diversity, largely uniform age classes and		species if prese		¥ 2 2 4		Tax		_	0		e dead	
reduced vegetation cover	1 -	Log diameter Trunk sized	None	Limited and	sparse	Numero	3	-	Score		ial if atta ognisable	
At least one strate of vegetation has been impacted		Branch-sized	0	0.5	,		1		\neg	BRETTE		
with reduced structural diversity, diaments may be missing (such as plant species that provide specifi-		Litter	Little or	Sparse and/o					Score		% native	
structural features e.g. sedges or mid layer shrubs			none	litter la	iyer	continue	sus litter	layer		>809		4
and reduce vegetation cover		Litter	0	45.2			1			>20-4		3
Limited impacts on native vegetation, with a diversit	y	Hollows - Sem			Mat	are Tree S	core			>10-2		2
of structural features and a varied age class, with o			ange mane							5-10		1
a minor loss in structurally diversity, vegetation cov	or	None		0	Mat		96	Tree C		<5	- 1	0
or structural diements	_	Sm hollows o	nly	1		a density	<30	diebac	:k* >70	(Therese		_
All strata of vagetation present, little or no sign of disturbance. A variety of ille forms and associated		Large +/- sm	hollows in	2	ha)	ı per	96	70	96	Cano	DZ.	- 1
age classes present. Vagetation cover near comple		very small po			'			96	"	Cover		- 1
Regeneration		trees				e present	0	0	0	>509		5
No regeneration present		Large +/- sm scattered but :		0	0-2		2	1	0	>25		4
Very low regeneration, consisting of highly scattere		Large +/- sm		4		- 50% - 75%	6	5	4	>10 -		2
juvinile plants of a limited number of species	° c	COMMISSION IN IN				- 100%	8	7	6	2.5 -		î
Regeneration present, consisting of multiple individ-	33 C	Large +/- sm		a 5						<2.5		ō
juvinile plants but a limited number of species	_	large majority	or trees		l							
Multiple species regenerating, but low numbers of		Weed Score	E .					[Cover F			
juvenile plants Multiple species regenerating with multiple individual	_	Does the site		rt species dec	daredun	der the		[y, cover <		
juvintee present with varying age classes.		NRM Act 2004 Cover rating to		od woode			_	ļ	Covering		2	
				ironmental we	nde Cele	durant	_	l	Covering	g 6 – 25%	3	
Duckland assessment for small sites	~0 E I	of makes a delta bloom		o invade and e				[g 26-505		
Bushland assessment for small sites (or narrow linear sites (<5m wide)	SU.5 I	species from t	bushland, T	his typically in	idudes s			ļ		g 51 – 79	% 5	
or narrow nnear sites (csm wide)		with a BCM w	ead threat r	ating of 3, 4 or	15).			Į	Covering	g > 75%	6	
Recorder/s:												
									N:	P	h dir'r	1:
Recorder/s:									N:	Р	h dir'r	1:
			Zone	: Dat	tum: .	E			N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1:
		Date:	Zone	: Dat	tum: .	nnials).			N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	1
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	2:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	2:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'ı	2:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	2:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	2:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	2:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	2:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'ı	2:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	P	h dir'ı	11
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	P	h dir'r	a:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	21
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	11:
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	Р	h dir'r	11
Bushland Assessment Site:		Date:	Zone	: Dat	tum: .	nnials).	:		N:	P	h dir'ı	

Native spp				Т	Weed spp	Г	
	\Box						
	\Box		\Box	\perp			
	$\perp \perp$		$\perp \perp$				
	$\perp \perp$		$\perp \! \! \perp$	\perp		$oxed{oxed}$	L
	$\perp \perp$		$\perp \! \! \perp$	\perp		L	
	$\bot\!\!\!\bot$		$\bot\!\!\!\bot$	\perp		L	L
	$\perp \perp$		$\perp \perp$	_		┖	L
	$+\!+\!$		$+\!+$	4		╙	L
	$+\!+$		$+\!+$	4		╙	L
	++		++	+		┡	L
	$+\!+$		$+\!+$	4		╙	L
	++		$+\!+$	+		┡	L
	++		++	4		┡	L
	++		++	+		┡	L
	++		++	+		⊢	L
	++		++	+		┡	L
	++	+	++	+		┡	L
	++		++	+		⊢	L
	$\bot\bot$		$\perp \perp$			L	L

Photographs						
No.	Description	Waypoint				
1	Photo representative of surveyed quadrat					

Notes (fencing/exclusions/other issues)						

Appendix 3 South Australian vegetation structural formations


Table below taken from Heard and Channon (1997).

LIFE FORM/ HEIGHT CLASS	PROJECTIVE FOLIAG	E COVER OF TALLES	T STRATUM	
	Dense (70-100%)	Mid-dense (30-70%)	Sparse (10-30%)	Very sparse (<10%)
Trees > 30m	Tall closed forest	Tall open forest	Tall woodland	Tall open woodland
Trees 10-30m	Closed forest	Open forest	Woodland	Open woodland
Trees 5-10m	Low closed forest	Low open forest	Low woodland	Low open woodland
Trees <5m	Very low closed forest	Very low open forest	Very low woodland	Very low open woodland
Mallee (>3m)	Closed mallee	Mallee	Open mallee	Very open mallee
Low Mallee (<3m)	Closed low mallee	Low mallee	Open low mallee	Very open low mallee
Shrubs > 2m	Tall closed shrubland	Tall shrubland	Tall open shrubland	Tall very open shrubland
Shrubs 1-2m	Closed shrubland	Shrubland	Open shrubland	Very open shrubland
Shrubs < 1m	Low closed shrubland	Low shrubland	Low open shrubland	Low very open shrubland
Mat plants	Closed mat plants	Mat plants	Open mat plants	Very open mat plants
Hummock grasses	Closed Hummock grassland	Hummock grassland	Open hummock grassland	Very open hummock grassland
Tussock grasses	Closed (tussock) grassland	(Tussock) grassland	Open (tussock) grassland	Very open (tussock) grassland
Sedges	Closed sedgeland	Sedgeland	Open sedgeland	Very open sedgeland
Herbs	Closed herbland	Herbland	Open herbland	Very open herbland
Ferns	Closed fernland	Fernland	Open fernland	Very open fernland

[Note: Table originally derived from Specht (1972) and Muir (1977)]

Appendix 4 Cover diagrams

Figure below taken from Heard and Channon (1997)

Appendix 5 Plant life forms

The list below includes plants for which life form categorisation is both important but ambiguous, i.e. plants that are commonly encountered **and** their life form is not always obvious, such as *Acacia pycnantha*. The BAM life forms below may differ from those listed in NCSSA Bushland Condition Monitoring manuals, however BAM assessment data collection should always align with this list.

Family, Genus or Species	Life Form Notes
Acacia spp. – southern regions	Some may be Tree form but the distinction not obvious, hence for simplicity
	call all Acacia spp. Shrub at all life stages except A. mearnsii, A. melanoxylon,
	A. pycnantha and A. provincialis which should be called Tree at all life stages.
Acacia spp. – mallee and	Trees include A. cambagei, A. estrophiolata, A. aneura and A. georginae.
northern areas	Those that could be either form (but for which the choice should be obvious)
	include A. calcicola, A. gillii, A. cibaria, A. loderi, A. murrayana, A. oswaldii, A.
	papyrocarpa, A. salicina, & A. stenophylla.
Acaena novae-zelandiae	Forb
Acrotriche spp.	Shrub
Alectryon oleifolius ssp.	Shrub or Tree - look at the branching habit
canescens	
Allocasuarina spp.	All Shrub except A. leuhmannii, A. verticillata, A striata
Alternanthera denticulata	Mat Plant
Astroloma humifusum	There are two distinct forms, so it should be obvious whether to list as Shrub
	or Mat plant.
Banksia marginata	Tree
Banksia ornata	Shrub
Bauera rubioides	Shrub or Vine/Scrambler – look at the habit
Boerhavia sp.	Vine/Scrambler
Bossiaea prostrata	Vine/Scrambler
Bursaria spinosa ssp.	Shrub
lasiophylla	
Bursaria spinosa ssp. spinosa	Shrub or Tree – look at the branching habit
Callistemon rugulosus	Shrub or Tree – look at the branching habit
Callistemon sieberi	Shrub or Tree – look at the branching habit
Callistemon teretifolius	Shrub
Capparis mitchellii	Tree
Carpobrotus spp.	Mat Plant
Cyperaceae spp.	All Sedge/Tussock – even though not all have tussock form, e.g. <i>Eleocharis</i>
	gracilis
Centella spp.	Forb or Vine/Scrambler – look at the habit
Centipeda spp.	Forb, except Centipeda minima ssp. minima = Mat Plant
Centrolepidaceae spp.	All Sedge/Tussock
Chamaesyce spp.	C. drummondii = Mat Plant, C. coghlanii = Shrub, rest are obvious
Cheiranthera alternifolia	Forb
Chenopodium spp.	Mat, Forb or Shrub, depending on species. Look at the habit.
Codonocarpus spp.	Shrub or Tree – look at the branching habit
Crassula spp.	Forb
Cullen spp.	Forb, Shrub, Mat or Vine/Scrambler, depending on species
Dichondra repens	Forb
Disphyma crassifolium ssp.	Mat Plant
clavellatum	
Drosera spp.	Forb, except D. macrantha ssp. planchonii = Vine/Scrambler
Duma florulenta	Shrub
Einadia spp.	Vine/Scrambler
Enchylaena tomentosa	Shrub or Vine/Scrambler
Eucalyptus spp.	Tree or Mallee. Include all Box species as Tree. For E. diversifolia, place
	single-stemmed colonies in Tree, multi-stemmed in Mallee.

Family, Genus or Species	Life Form Notes
Euphorbia spp.	Forb
Euromyrtus ramosissima ssp.	Shrub
ramosissima	
Exocarpos aphyllus	Shrub or Tree – look at the branching habit
Exocarpos cupressiformis	Shrub or Tree – look at the branching habit
Exocarpos sparteus	Shrub
Exocarpos strictus	Shrub or Tree – look at the branching habit
Exocarpos syrticola	Shrub or Tree – look at the branching habit
Gonocarpus spp.	All Forb except G. micranthus ssp. micranthus = Mat Plant
Gratiola spp.	Forb
Halosarcia spp.	Shrub or Forb, depending on species
Hibbertia spp.	All Shrub except <i>H. empetrifolia</i> ssp. <i>radians</i> = Vine/Scrambler
Hydrocotyle spp.	Forb
Isoetes spp.	Fern
Kennedia spp.	Vine/Scrambler
Kunzea pomifera	Mat Plant
Lawrencia spp.	Forb or Shrub
Lipocarpha microcephala	Sedge/Tussock
Liliaceae spp.	Forb, some are Sedge/Tussock (e.g. <i>Dianella</i> spp., <i>Patersonia</i> spp.)
Luzula spp.	Sedge/Tussock
Lycopodiella lateralis	Forb
Lycopodiella serpentina	Mat Plant
Lycopodium deuterodensum	Fern
Mimulus spp.	Some are Forb, some are Mat Plants, some can be either but should be
	obvious if you look at habit
Maireana spp.	All Shrub except <i>M. enchylaenoides</i> = Forb
Montia australasica	Mat Plant
Montia fontana ssp.	Forb
chondrosperma	
Nitraria billardierei	Shrub
Orchidaceae spp.	Forb, including <i>Dipodium</i> sp.
Ophioglossum spp.	Fern
Osteocarpum spp.	Forb
Ottelia ovalifolia ssp. ovalifolia	Forb
Pachycornia triandra	Shrub
Peplidium spp.	Mat Plant
Phragmites australis	Grass
Pittosporum angustifolium	Tree
Pratia spp.	Forb or Mat Plant
Restionaceae spp.	All Sedge/Tussock, except Empodisma minus = Vine/Scrambler
Rhyncharrhena linearis	Shrub or Vine/Scrambler
Roepera spp.	Shrub
Santalum spp.	Shrub or Tree – look at the branching habit
Sarcocornia spp.	Shrub
Sarcozona spp.	Shrub
Sclerolaena spp.	Shrub or Forb, depending on species
Sclerostegia spp.	Shrub
Selaginella spp.	Fern
Suaeda spp.	Shrub or Forb, depending on species
Tetragonia implexicoma	Mat Plant, Forb or Vine/Scrambler, look at the habit
Typha spp.	include in Sedge/Tussock
Villarsia spp.	Forb
Viminaria juncea	Shrub
Vittadinia spp.	List as Forb unless of a form or age that has woody stems, in which case list as
.,	Shrub

Family, Genus or Species	Life Form Notes
Wilsonia backhousei	Shrub
Wilsonia humilis var. humilis	Mat Plant
Wilsonia rotundifolia	Mat Plant
Xyris operculata	Sedge/Tussock
Water plants	Many water plants, such as Lemnaceae, <i>Azolla</i> spp., <i>Wolffia</i> spp. & <i>Rorippa</i> spp. can be classified as mat plants, some (e.g. <i>Lepilaena</i> spp., <i>Ruppia</i> spp., <i>Triglochin</i> spp.) are forbs, some genera include both (e.g. <i>Myriophyllum</i> spp.). Look at the habit.

Appendix 6 Benchmark scores for 1 ha quadrat

DNS = Do not score; SNB = Can score but no benchmark for this community

Communities coloured blue are considered to be 'naturally treeless', with scores corrected for absence of tree attributes.

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SMLR 1 - Forests &	Plant Species	0	1-4	5-7	8-9	10-	12-	14-	17-	21-	24-	28-	31-	35-	42-	49-	56+
Woodlands with a	Diversity					11	13	16	20	23	27	30	34	41	48	55	
Dense Sclerophyll	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
Shrub Understorey			39	35	32	28	24	21	19	16	14	12					
	Native Plant Life	0	1-6	7-8	9	10-	13-	15-	18-	20-	23-	25+					
	Forms					12	14	17	19	22	24						
	Regeneration	0	1	2	3-4	5	6	7-8	9-10	11+							ш.
SMLR 2 - Forests and	Plant Species	0	1-3	4-5	6-7	8-10	11-	13-	16-	18-	21-	24-	28-	31-	37-	43-	49+
Woodlands with an	Diversity						12	15	17	20	23	27	30	36	42	48	
Open Sclerophyll Shrub	Weeds	48+	44-	39-	35-	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	5-7	0-4
Understorey			47	43	38	34	29	26	22	19	17	14	12				
	Native Plant Life	0	1-5	6-7	8	9-11	12-	14-	17-	19-	22-	24+					
	Forms						13	16	18	21	23						
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
SMLR 3.1 - Smooth	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11-	14-	16-	19-	22-	25-	30-	36-	41+
Barked Gum	Diversity								13	15	18	21	24	29	35	40	
Woodlands with an	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
Open Shrub and Grassy			53	48	44	39	34	31	27	24	21	19	16	14	11		
Understorey	Native Plant Life	0	1-4	5-6	7	8-9	10-	12-	14	15-	18-	20+					
	Forms						11	13		17	19						
	Regeneration	0		1	2	3	4	5-6	7	8+							
SMLR 3.2 - Box-Bark	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11-	14-	16-	19-	22-	25-	30-	36-	41+
Gum and Small Tree	Diversity								13	15	18	21	24	29	35	40	
Woodlands with an	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
Open Shrub and Grassy			53	48	44	39	34	31	27	24	21	19	16	14	11		
Understorey	Native Plant Life	0	1-4	5-6	7	8-9	10-	12-	14	15-	18-	20+					1
•	Forms			-			11	13		17	19						
	Regeneration	0		1	2	3	4	5-6	7	8+							1

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SMLR 3.3 – Grasslands	Plant Species	0	1-2	3	4	5-6	7	8-9	10-	13-	15-	17-	19-	21-	25-	30-	34+
+/- Emergent Trees &	Diversity								12	14	16	18	20	24	29	33	
Shrubs	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
			53	48	44	39	34	31	27	24	21	19	16	14	11		
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+					
	Forms							11		15	17						
	Regeneration	0			1	2		3	4	5+							
SMLR 4 - Gully Forests	Plant Species	0	1-2	3	4	5-6	7	8-10	11-	13-	16-	19-	23-	26-	32-	38-	44+
	Diversity								12	15	18	22	25	31	37	43	<u> </u>
	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
			39	35	32	28	24	21	19	16	14	12					<u> </u>
	Native Plant Life	0	1-7	8-9	10	11-	13-	15-	17-	19-	22-	24+					
	Forms					12	14	16	18	21	23						<u> </u>
	Regeneration	0		1	2-3	4	5	6-7	8-9	10+							
SMLR 5.1 - Drainage	Plant Species	0	1-2	3	4	5-6	7	8-9	10-	12-	14-	16-	19-	21-	25-	30-	34+
Line in Grassy	Diversity								11	13	15	18	20	24	29	33	
Woodland	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
			53	48	44	39	34	31	27	24	21	19	16	14	11		
	Native Plant Life	0	1-5	6-7	8	9-10	11-	13-	15	16-	19-	21+					
	Forms						12	14		18	20						
	Regeneration	0		1	2	3	4	5-6	7	8+							
SMLR 5.2 - Steep	Plant Species	0	1-4	5-6	7-8	9	10-	12-	14-	16-	18-	20-	23-	25-	29-	34-	38+
Creekline in	Diversity						11	13	15	17	19	22	24	28	33	37	
Stringybark Forest	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
			53	48	44	39	34	31	27	24	21	19	16	14	11		
	Native Plant Life	0	1-6	7-8	9	10-	13-	15-	18-	20-	23-	25+					
	Forms					12	14	17	19	22	24						
	Regeneration	0	1	2	3-4	5	6	7-8	9-10	11+							
SMLR 5.3 - Deep	Plant Species	0	1-2	3	4	5-6	7	8-9	10-	12-	14-	16-	19-	21-	25-	30-	34+
Channel with Red Gum	Diversity								11	13	15	18	20	24	29	33	
Woodland	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
			53	48	44	39	34	31	27	24	21	19	16	14	11		
	Native Plant Life	0	1-5	6-7	8	9-10	11-	13-	15	16-	19-	21+					
	Forms						12	14		18	20						
	Regeneration	0		1	2	3	4	5-6	7	8+							1

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SMLR 6.1 - Shrubland,	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11-	14-	16-	19-	22-	25-	30-	36-	41+
Sedgeland &	Diversity								13	15	18	21	24	29	35	40	
Woodland Swamps &	Weeds	48+	44-	39-	35-	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	5-7	0-4
Bogs (note only			47	43	38	34	29	26	22	19	17	14	12				
'naturally treeless if not	Native Plant Life	0	1-5	6-7	8	9-10	11-	13-	15-	17-	20-	22+					
a Woodland Swamp)	Forms						12	14	16	19	21						
	Regeneration	0		1	2	3	4	5-6	7	8+							
SMLR 6.2 - Common	Plant Species	0		1	2		3	4	5	6	7	8	9	10-	12-	14-	16+
Reed, Bulrush &	Diversity													11	13	15	
Lignum Swamps	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
			53	48	44	39	34	31	27	24	21	19	16	14	11		
	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	<u> </u>						+
SMLR 6.3 - Cutting	Plant Species	0	1	2	3		4	5	6	7	8	9-10	11	12-	14-	17-	19+
Grass Swamp	Diversity													13	16	18	
•	Weeds	48+	44-	39-	35-	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	5-7	0-4
			47	43	38	34	29	26	22	19	17	14	12				
	Native Plant Life	0	1-2	3-4	5-6	7	8	9	10	11-	14-	16+					
	Forms									13	15						
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SMLR Co 7.1 - Coastal Tussock Grasslands	Plant Species Diversity	0		1		2		3		4	5		6	7	8-9	10	11+
	Weeds	25+	23-	20-	18-	15-	13-	12	10-	9	7-8	6	5	4	3	2	0-1
			24	22	19	17	14		11								
	Native Plant Life	0	1	2	3	4-5	6	7	8	9-11	12-	14+					
	Forms										13						
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SMLR Co 7.2 - Coastal	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11	12-	14-	16-	18-	20-	24-	27-	31+
Shrublands & Tall	Diversity									13	15	17	19	23	26	30	
Shrublands	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
			39	35	32	28	24	21	19	16	14	12					
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+					
	Forms							11		15	17						
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SMLR Co 7.31 - Non-	Plant Species	0	1-2	3-4	5-6	7	8-9	10-	12-	15-	17-	19-	22-	24-	29-	33-	38+
eucalypt Coastal Low	Diversity							11	14	16	18	21	23	28	32	37	
Woodlands	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
			39	35	32	28	24	21	19	16	14	12					
	Native Plant Life	0	1-4	5-6	7	8-9	10-	12-	14-	16-	19-	21+					
	Forms						11	13	15	18	20						
	Regeneration	0		1	2	3	4	5-6	7	8+							<u> </u>
SMLR Co 7.32 - Non-	Plant Species	0		1	2		3	4	5	6	7	8	9	10-	12-	14-	16+
eucalypt Coastal Low	Diversity													11	13	15	
Woodlands (Dryland	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
Teatree sole dominant)			39	35	32	28	24	21	19	16	14	12					<u> </u>
	Native Plant Life	0	1	2	3	4	5	6-7	8	9-11	12-	14+					
	Forms										13						<u> </u>
	Regeneration	0		1	2	3		4	5	6+							
SMLR Co 7.4 - Coastal	Plant Species	0	1-3	4-5	6	7-8	9	10-	12	13-	15-	17	18-	20-	23-	27-	30+
Cliff Low Shrublands,	Diversity							11		14	16		19	22	26	29	
Hummock Grasslands	Weeds	33+	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	7	5-6	4	3	0-2
& Very Low Open			32	29	26	22	19	17	14	12							
Woodlands	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+					
	Forms							11		15	17						
	Regeneration	0		1	2	3		4	5	6+							
SMLR Co 8.1 - Coastal	Plant Species		0			1			2			3		4		5	6+
Samphire Shrublands	Diversity																
with Tidal	Weeds	17+	15-	14	12-	10-	9	8	7	6	5	4		3	2	1	0
Inundation/Hypersaline			16		13	11											
	Native Plant Life	0	1	2	3	4	5	6	7	8-10	11-	13+					
	Forms										12						<u> </u>
	Regeneration	0			1	2		3	4	5+							
SMLR Co 8.2 – Coastal	Plant Species	0		1	2		3	4		5	6		7	8	9-10	11	12+
Samphire +/- Saltbush,	Diversity																
Bluebush Shrublands	Weeds	25+	23-	20-	18-	15-	13-	12	10-	9	7-8	6	5	4	3	2	0-1
with Infrequent			24	22	19	17	14		11								
Inundation/Lower	Native Plant Life	0-1	2	3	4	5	6	7-8	9	10-	13-	15+					
Salinity	Forms									12	14						
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SMLR Co 8.3 – Coastal Swamp Paperbark Low	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
Open Forests & Tall	Weeds	33+	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	7	5-6	4	3	0-2
Shrublands of Saline			32	29	26	22	19	17	14	12							-
Swamps	Native Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0		1	2	3		4	5	6+							
SMLR Co 9 - Mangroves	Plant Species Diversity	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB
	Weeds	17+	15- 16	14	12- 13	10- 11	9	8	7	6	5	4		3	2	1	0
	Native Plant Life Forms	0	1	2		3	4	5		6-8	9-10	11+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SMLR Co Community 1.2 - Coastal Very Low	Plant Species Diversity	0	1-4	5-7	8-9	10- 11	12- 13	14- 16	17- 20	21- 23	24- 27	28- 30	31- 34	35- 41	42- 48	49- 55	56+
Woodlands with Heath Understorey	Weeds	40+	36- 39	33- 35	29- 32	25- 28	22- 24	20- 21	17- 19	15- 16	13- 14	11- 12	9-10	8	6-7	4-5	0-3
•	Native Plant Life Forms	0	1-6	7-8	9	10- 12	13- 14	15- 17	18- 19	20- 22	23- 24	25+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
SMLR Co Community 2 - Forests & Woodlands	Plant Species Diversity	0	1-3	4-5	6-7	8-10	11- 12	13- 15	16- 17	18- 20	21- 23	24- 27	28- 30	31- 36	37- 42	43- 48	49+
with an Open Sclerophyll Shrub	Weeds	48+	44- 47	39- 43	35- 38	30- 34	27- 29	23- 26	20- 22	18- 19	15- 17	13- 14	11- 12	10	8-9	5-7	0-4
Understorey	Native Plant Life Forms	0	1-5	6-7	8	9-11	12- 13	14- 16	17- 18	19- 21	22-	24+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							†
SMLR Co Community 6.2 - Common Reed.	Plant Species Diversity	0		1	2		3	4	5	6	7	8	9	10- 11	12- 13	14- 15	16+
Bulrush & Lignum Swamps	Weeds	54+	49- 53	45- 48	40- 44	35- 39	32- 34	28- 31	25- 27	22- 24	20- 21	17- 19	15- 16	12- 14	10- 11	7-9	0-6
T	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
NA 1 - Open Forests &	Plant Species	0	1-4	5-6	7-9	10-	12-	15-	18-	21-	24-	28-	31-	35-	42-	48-	55+
Woodlands with a	Diversity					11	14	17	20	23	27	30	34	41	47	54	
Dense Shrub	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
Understorey			39	35	32	28	24	21	19	16	14	12					
	Native Plant Life	0	1-6	7-8	9	10-	13-	15-	18-	20-	23-	25+					
	Forms					12	14	17	19	22	24						
	Regeneration	0	1	2	3-4	5	6	7-8	9-10	11+							
NA 2 - Open Forests &	Plant Species	0	1-3	4-5	6-7	8-10	11-	13-	16-	18-	21-	24-	27-	30-	36-	41-	47+
Woodlands with a Mid-	Diversity						12	15	17	20	23	26	29	35	40	46	
dense Shrub & Grassy	Weeds	48+	44-	39-	35-	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	5-7	0-4
Understorey			47	43	38	34	29	26	22	19	17	14	12				
	Native Plant Life	0	1-5	6-7	8	9-11	12-	14-	17-	19-	22-	24+					
	Forms						13	16	18	21	23						
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
NA 3.1 - Woodlands	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11-	14-	16-	19-	22-	25-	30-	36-	41+
with an Open Grassy	Diversity								13	15	18	21	24	29	35	40	
Understorey	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
•			53	48	44	39	34	31	27	24	21	19	16	14	11		
	Native Plant Life	0	1-4	5-6	7	8-9	10-	12-	14	15-	18-	20+					
	Forms						11	13		17	19						
	Regeneration	0		1	2	3	4	5-6	7	8+							
NA 3.2 - Grasslands	Plant Species	0	1-2	3	4	5-6	7	8-9	10-	13-	15-	17-	19-	21-	25-	30-	34+
	Diversity		-					-	12	14	16	18	20	24	29	33	
	Weeds	54+	49-	45-	40-	35-	32-	28-	25-	22-	20-	17-	15-	12-	10-	7-9	0-6
			53	48	44	39	34	31	27	24	21	19	16	14	11	' '	
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+		İ			+
	Forms					' '		11		15	17						
	Regeneration	0			1	2		3	4	5+							
NA 4 - Low Woodlands	Plant Species	0	1-3	4-5	6-7	8-10	11-	13-	16-	18-	21-	24-	27-	30-	36-	41-	47+
& Open Mallee with	Diversity		'	' '	"		12	15	17	20	23	26	29	35	40	46	'' '
Dense to Mid-dense	Weeds	33+	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	7	5-6	4	3	0-2
Shrub & / or Spinifex			32	29	26	22	19	17	14	12			l .		.		-
and Sedge Understorey	Native Plant Life	0	1-3	4-6	7-8	9-10	11-	13-	16-	18-	21-	23+					+
,	Forms		. ,	. •			12	15	17	20	22						
	Regeneration	0	1	2	3	4	5	6-7	8	9+							1

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
NA 5 - Mallee & Woodlands with Open	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
Chenopod & Sclerophyll Shrub	Weeds	33+	30- 32	27- 29	23- 26	20- 22	18- 19	15- 17	13- 14	11- 12	10	8-9	7	5-6	4	3	0-2
Understorey	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12- 13	14- 16	17- 18	19+					
	Regeneration	0		1	2	3		4	5	6+							
NA 6 - Inland Tall Shrublands	Plant Species Diversity	0	1-3	4-5	6	7	8	9	10	11	12- 13	14	15- 16	17- 19	20- 21	22- 24	25+
	Weeds	40+	36- 39	33- 35	29- 32	25- 28	22- 24	20- 21	17- 19	15- 16	13- 14	11- 12	9-10	8	6-7	4-5	0-3
	Native Plant Life Forms	0	1-3	4-5	6	7	8	9	10	11- 13	14- 15	16+					
	Regeneration	0		1	2	3		4	5	6+							
NA 7.1 - Riparian Woodlands	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
	Weeds	54+	49- 53	45- 48	40- 44	35- 39	32- 34	28- 31	25- 27	22- 24	20- 21	17- 19	15- 16	12- 14	10- 11	7-9	0-6
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 20	21+					
	Regeneration	0		1	2	3		4	5	6+							
NA 7.2 - Common Reed & / or Bulrush	Plant Species Diversity	0		1	2		3	4	5	6	7	8	9	10- 11	12- 13	14- 15	16+
Dominated Sedgelands	Weeds	54+	49- 53	45- 48	40- 44	35- 39	32- 34	28- 31	25- 27	22- 24	20- 21	17- 19	15- 16	12- 14	10- 11	7-9	0-6
	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	DNS	DNS	DNS	DNS	DNS	DNS	DNS	DNS	DNS							
NA 8 - Coastal Plain Shrublands	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
	Weeds	40+	36- 39	33- 35	29- 32	25- 28	22- 24	20- 21	17- 19	15- 16	13- 14	11- 12	9-10	8	6-7	4-5	0-3
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
NA 9.1 - Shrublands &	Plant Species	0	1-2	3	4	5	6	7	8-9	10	11	12-	14	15-	18-	20-	23+
Low Shrublands on	Diversity											13		17	19	22	<u> </u>
Coastal Dunes & Shell-	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
grit Ridges			39	35	32	28	24	21	19	16	14	12					
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+					
	Forms							11		15	17						
	Regeneration	0		1	2	3		4	5	6+							
NA 9.2 - Low	Plant Species	0	1-2	3	4	5-6	7	8-9	10	11-	13-	15-	18-	20-	24-	28-	32+
Woodlands on Coastal	Diversity									12	14	17	19	23	27	31	
Dunes & Shell-grit	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
Ridges			39	35	32	28	24	21	19	16	14	12					
_	Native Plant Life	0	1-4	5-6	7-8	9-10	11	12-	14-	16-	19-	21+					1
	Forms							13	15	18	20						
	Regeneration	0		1	2	3	4	5-6	7	8+							1
NA 10.1 - Low	Plant Species		0			1			2			3		4		5	6+
Samphire Shrublands	Diversity																
with Tidal Inundation /	Weeds	17+	15-	14	12-	10-	9	8	7	6	5	4		3	2	1	0
Hypersaline			16		13	11											
	Native Plant Life	0	1	2	3	4	5	6	7	8-10	11-	13+					1
	Forms										12						
	Regeneration	0			1	2		3	4	5+							
NA 10.2 - Samphire	Plant Species	0		1	2		3	4		5	6		7	8	9-10	11	12+
Shrublands with	Diversity																
Infrequent Inundation /	Weeds	25+	23-	20-	18-	15-	13-	12	10-	9	7-8	6	5	4	3	2	0-1
Lower Salinity			24	22	19	17	14		11								
	Native Plant Life	0	1-2	3	4	5	6	7-8	9	10-	13-	15+					
	Forms									12	14						
	Regeneration	0		1	2	3		4	5	6+							
NA 11 - Mangroves on	Plant Species	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB
Intertidal Mudflats	Diversity																
	Weeds	17+	15-	14	12-	10-	9	8	7	6	5	4		3	2	1	0
			16		13	11											
	Native Plant Life	0	1	2		3	4	5		6-8	9-10	11+					
	Forms																
	Regeneration	DNS	DNS	DNS	DNS	DNS	DNS	DNS	DNS	DNS							1

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
YP 1 - Woodlands with	Plant Species	0	1-4	5-6	7-9	10-	12-	15-	18-	21-	24-	28-	31-	35-	42-	48-	55+
a Shrub Dominated	Diversity					11	14	17	20	23	27	30	34	41	47	54	
Understorey	Weeds	33+	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	7	5-6	4	3	0-2
			32	29	26	22	19	17	14	12							
	Native Plant Life	0	1-4	5-6	7-8	9-11	12-	14-	17-	19-	22-	24+					
	Forms						13	16	18	21	23						
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
YP 2 - Woodlands &	Plant Species	0	1-4	5-6	7-9	10-	12-	15-	18-	21-	24-	28-	31-	35-	42-	48-	55+
Tall Shrublands with	Diversity					11	14	17	20	23	27	30	34	41	47	54	
Shrub & Sedge	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
Dominated			39	35	32	28	24	21	19	16	14	12					
Understorey	Native Plant Life	0	1-4	5-6	7-8	9-11	12-	14-	17-	19-	22-	24+					
	Forms						13	16	18	21	23						
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
YP 3.1 - Mallee Box or	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11	12-	14-	16-	19-	21-	25-	29-	33+
Red Gum Woodland	Diversity									13	15	18	20	24	28	32	
with an Open Grassy	Weeds	48+	44-	39-	35-	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	5-7	0-4
Understorey			47	42	38	34	29	26	22	19	17	14	12				
	Native Plant Life	0	1-4	5-6	7	8-9	10-	12-	14	15-	18-	20+					
	Forms						11	13		17	19						
	Regeneration	0		1	2	3	4	5-6	7	8+							
YP 3.2 - Dryland Tea-	Plant Species	0	1-2	3	4	5-6	7	8	9-10	11	12-	14	15-	17-	20-	23-	26+
tree or Drooping	Diversity										13		16	19	22	25	
Sheoak Low Woodland	Weeds	48+	44-	39-	35-	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	5-7	0-4
with an Open Grassy			47	42	38	34	29	26	22	19	17	14	12				
Understorey	Native Plant Life	0	1-3	4	5	6-7	8	9-10	11-	13-	16-	18+					
	Forms								12	15	17						
	Regeneration	0		1	2	3		4	5	6+							
YP 3.3 - Southern	Plant Species	0	1-2	3	4	5-6	7	8	9-10	11	12-	14	15-	17-	20-	23-	26+
Cypress Pine Woodland	Diversity										13		16	19	22	25	
with an Open Grassy	Weeds	48+	44-	39-	35-	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	5-7	0-4
Understorey			47	42	38	34	29	26	22	19	17	14	12				
-	Native Plant Life	0	1-3	4	5	6-7	8	9-10	11-	13-	16-	18+					
	Forms								12	15	17						
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
YP 4 - Mallee with a	Plant Species	0	1-4	5-6	7-9	10-	12-	15-	18-	21-	24-	28-	31-	35-	42-	48-	55+
Sclerophyll Shrub	Diversity					11	14	17	20	23	27	30	34	41	47	54	
Understorey with	Weeds	25+	23-	20-	18-	15-	13-	12	10-	9	7-8	6	5	4	3	2	0-1
Broombush and/or			24	22	19	17	14		11								<u> </u>
Mallee Honey-myrtle	Native Plant Life	0	1-4	5-6	7-8	9-11	12-	14-	17-	19-	22-	24+					
	Forms						13	16	18	21	23						<u> </u>
	Regeneration	0	1	2	3-4	5	6	7-8	9-10	11+							
YP 5 - Mallee with an Open Chenopod &	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
Sclerophyll Shrub	Weeds	25+	23-	20-	18-	15-	13-	12	10-	9	7-8	6	5	4	3	2	0-1
Understorey			24	22	19	17	14		11								
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12-	14-	17-	19+					
	Forms							11	13	16	18						
	Regeneration	0		1	2	3		4	5	6+							
YP 6 - Coastal & Sub-	Plant Species	0	1-4	5-6	7-9	10-	12-	15-	18-	21-	24-	28-	31-	35-	42-	48-	55+
coastal Mallee with a	Diversity					11	14	17	20	23	27	30	34	41	47	54	
Dense Shrub	Weeds	25+	23-	20-	18-	15-	13-	12	10-	9	7-8	6	5	4	3	2	0-1
Understorey			24	22	19	17	14		11								
	Native Plant Life	0	1-4	5-6	7-8	9-11	12-	14-	17-	19-	22-	24+					
	Forms						13	16	18	21	23						
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
YP 7.1 - Coastal Tussock Grasslands of	Plant Species Diversity	0		1		2		3		4	5		6	7	8-9	10	11+
Dunes & Cliffs	Weeds	25+	23-	20-	18-	15-	13-	12	10-	9	7-8	6	5	4	3	2	0-1
			24	22	19	17	14		11								
	Native Plant Life	0	1	2	3	4-5	6	7	8	9-11	12-	14+					
	Forms										13						
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
YP 7.2 - Coastal	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11	12-	14-	16-	18-	20-	24-	27-	31+
Shrublands of Dunes &	Diversity									13	15	17	19	23	26	30	
Cliff-tops	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
-			39	35	32	28	24	21	19	16	14	12					
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+					
	Forms							11		15	17				<u>L</u>		
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
YP 7.3 - Coastal Low	Plant Species	0	1-3	4-5	6-7	8-10	11-	13-	16-	18-	21-	24-	27-	30-	36-	41-	47+
Woodlands of Dunes &	Diversity						12	15	17	20	23	26	29	35	40	46	
Cliff-top Dunes	Weeds	40+	36-	33-	29-	25-	22-	20-	17-	15-	13-	11-	9-10	8	6-7	4-5	0-3
			39	35	32	28	24	21	19	16	14	12					
	Native Plant Life	0	1-4	5-6	7	8-9	10-	12-	14-	16-	19-	21+					
	Forms						11	13	15	18	20						
	Regeneration	0		1	2	3	4	5-6	7	8+							
YP 7.4 - Coastal Very	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11	12-	14-	16-	19-	21-	25-	29-	33+
Low Open Woodlands	Diversity									13	15	18	20	24	28	32	
& Low Open	Weeds	33+	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	7	5-6	4	3	0-2
Shrublands of Cliffs			32	29	26	22	19	17	14	12							
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+					
	Forms							11		15	17						
	Regeneration	0		1	2	3		4	5	6+							
YP 8.1 - Low Samphire	Plant Species		0			1			2			3		4		5	6+
Shrublands with Tidal	Diversity																<u> </u>
Inundation /	Weeds	17+	15-	14	12-	10-	9	8	7	6	5	4		3	2	1	0
Hypersaline			16		13	11											
	Native Plant Life	0	1	2	3	4	5	6	7	8-10	11-	13+					
	Forms										12						
	Regeneration	0			1	2		3	4	5+							
YP 8.2 - Samphire Shrublands with	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
Infrequent Inundation/	Weeds	25+	23-	20-	18-	15-	13-	12	10-	9	7-8	6	5	4	3	2	0-1
Lower Salinity			24	22	19	17	14		11								
	Native Plant Life	0	1-2	3	4	5	6	7-8	9	10-	13-	15+					
	Forms									12	14						
	Regeneration	0		1	2	3		4	5	6+							
YP 8.3 - Swamp	Plant Species	0	1-2	3	4	5	6	7	8-9	10	11	12-	14	15-	18-	20-	23+
Paperbark or Dryland	Diversity											13		17	19	22	
Tea-tree Low Forest	Weeds	33+	30-	27-	23-	20-	18-	15-	13-	11-	10	8-9	7	5-6	4	3	0-2
Shrublands			32	29	26	22	19	17	14	12							
	Native Plant Life	0	1-3	4	5	6-7	8	9-10	11	12-	15-	17+					
	Forms									14	16						
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
YP 8.4 - Thatching Grass Sedgelands of	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
Saline Swamps	Weeds	33+	30- 32	27- 29	23- 26	20- 22	18- 19	15- 17	13- 14	11- 12	10	8-9	7	5-6	4	3	0-2
	Native Plant Life Forms	0	1-2	3	4	5	6	7	8	9	12- 13	14+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
EP 1 - Open Forests & Woodlands with Dense	Plant Species Diversity	0	1-4	5-6	7-9	10- 11	12- 14	15- 17	18- 20	21- 23	24- 27	28- 30	31- 34	35- 41	42- 47	48- 54	55+
Sclerophyll Shrub Understorey	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
·	Native Plant Life Forms	0	1-6	7-8	9	10- 12	13- 14	15- 17	18- 19	20- 22	23- 24	25+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
EP 2 - Open Forests & Woodlands with Mid-	Plant Species Diversity	0	1-3	4-5	6-7	8-10	11- 12	13- 15	16- 17	18- 20	21- 23	24- 26	27- 29	30- 35	36- 40	41- 46	47+
dense Shrub & Grassy Understorey	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
·	Native Plant Life Forms	0	1-5	6-7	8	9-11	12- 13	14- 16	17- 18	19- 21	22- 23	24+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
EP 3.1 - Woodlands with Grassy or Low	Plant Species Diversity	0	1-2	3-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 34	35- 39	40+
Sedge Understorey	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9-10	11- 12	13- 14	15- 17	18- 19	20+					
	Regeneration	0		1	2	3		4	5	6+							
EP 3.2 - Grasslands	Plant Species Diversity	0	1-2	3	5	6-7	8	9-10	11	12- 13	14- 15	16- 17	18- 19	20- 23	24- 26	27- 30	31+
	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21-	18-	16- 17	13- 15	11-	7-10	0-6
	Native Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11- 12	13- 15	16- 17	18+					
	Regeneration	0			1	2		3	4	5+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
EP 4 - Mallee with	Plant Species	0	1-4	5-6	7-8	9-11	12-	14-	17-	19-	22-	25-	29-	32-	38-	44-	50+
Dense Sclerophyll	Diversity						13	16	18	21	24	28	31	37	43	49	
Shrub Understorey &	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Sclerophyll Shrublands			46	42	38	33	29	26	23	20	18	15	13				
	Native Plant Life	0	1-5	6-7	8	9-10	11-	13-	16-	18-	21-	23+					
	Forms						12	15	17	20	22						
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
EP 5.1 - Mallee on	Plant Species	0	1-2	3-4	5-6	7	8-9	10-	12-	14-	16-	19-	22-	25-	30-	35-	40+
Inland Sand Dunes and	Diversity							11	13	15	18	21	24	29	34	39	
Deep Sands	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
			46	42	38	33	29	26	23	20	18	15	13				
	Native Plant Life	0	1-3	4-5	6	7-8	9-10	11-	13-	15-	18-	20+					
	Forms							12	14	17	19						
	Regeneration	0		1	2	3	4	5-6	7	8+							
EP 5.2 - Mallee on	Plant Species	0	1-3	4-5	6-7	8-10	11-	13-	16-	18-	21-	24-	27-	30-	36-	41-	47+
Sandy Loams of Inland	Diversity						12	15	17	20	23	26	29	35	40	46	
Swales and Low Dunes	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
			46	42	38	33	29	26	23	20	18	15	13				
	Native Plant Life	0	1-4	5-6	7	8-9	10-	12-	14-	16-	19-	21+					
	Forms						11	13	15	18	20						
	Regeneration	0		1	2	3	4	5-6	7	8+							
EP 6.1 - Mallee with	Plant Species	0	1-2	3	4	5	6	7	8-9	10	11	12-	14	15-	18-	20-	23+
Open Shrub	Diversity											13		17	19	22	
Understorey on Heavy	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Clay Soil Flats			46	42	38	33	29	26	23	20	18	15	13				
	Native Plant Life	0	1-3	4	5	6-7	8	9-10	11	12-	15-	17+					
	Forms									14	16						
	Regeneration	0		1	2	3		4	5	6+							
EP 6.2 - Mallee with	Plant Species	0	1-2	3-4	5	6-7	8	9-10	11	12-	14-	16-	18-	20-	24-	27-	31+
Open Shrub	Diversity									13	15	17	19	23	26	30	
Understorey on Clay-	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Ioam Soil Flats			46	42	38	33	29	26	23	20	18	15	13				
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12-	14-	17-	19+					
	Forms							11	13	16	18						
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
EP 7.1 - Woodlands & Mallee with Mid-dense	Plant Species Diversity	0	1-2	3-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 34	35- 39	40+
Sclerophyll Shrub Understorey	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9-10	11- 12	13- 14	15- 17	18- 19	20+					
	Regeneration	0		1	2	3	4	5-6	7	8+							
EP 7.2 - Broombush Closed Shrubland	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-2	3-4	5	6-7	8	9	10	11- 13	14- 15	16+					
	Regeneration	0		1	2	3		4	5	6+							
EP 8.1 - Mallee & Low Woodlands with Open	Plant Species Diversity	0	1-2	3-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 34	35- 39	40+
Sclerophyll Shrub & Chenopod Understorey	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12- 13	14- 16	17- 18	19+					
	Regeneration	0		1	2	3		4	5	6+							
EP 8.2 - Mallee & Low Woodlands with	Plant Species Diversity	0	1-2	3	4	5	6	7	8	9	10	11	12	13- 14	15- 16	17- 18	19+
Sclerophyll & Chenopod Understorey	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Dominated by Boree	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	0			1	2		3	4	5+							
P 9.1 - Open Mallee & ow Open Woodlands	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
ow Open Woodlands vith a Chenopod Shrub Jnderstorey	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
EP 9.2 - Chenopod Open Shrublands	Plant Species Diversity	0	1-2	3	4	5	6	7	8	9	10	11	12	13- 14	15- 16	17- 18	19+
	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	0			1	2		3	4	5+							
EP 10.1 - Open Woodlands with Open	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
Sclerophyll Shrub Understorey on Heavy	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Soil Plains	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					
	Regeneration	0		1	2	3		4	5	6+							
EP 10.2 - Open Shrublands on Heavy	Plant Species Diversity	0	1-2	3	4	5	6	7	8	9	10	11	12	13- 14	15- 16	17- 18	19+
Soil Plains	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0			1	2		3	4	5+							
EP 11.1 - Inland Mallee & Low Woodland with	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 28	29- 31	32- 37	38- 43	44- 49	50+
Mid Dense Sclerophyll Shrub Understorey on	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Limestone Soils	Native Plant Life Forms	0	1-5	6-7	8	9-10	11- 12	13- 15	16- 17	18- 20	21- 22	23+					
	Regeneration	0		1	2	3		4	5	6+							
EP 11.2 - Sub-coastal &	Plant Species	0	1-4	5-6	7-9	10-	12-	15-	18-	21-	24-	28-	31-	35-	42-	48-	55+
Coastal Low Mallee	Diversity					11	14	17	20	23	27	30	34	41	47	54	
with Mid Dense Sclerophyll Shrub	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Understorey on Limestone Soils	Native Plant Life Forms	0	1-5	6-7	8	9-11	12- 13	14- 16	17- 18	19- 21	22- 23	24+					
	Regeneration	0		1	2	3	4	5-6	7	8+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
EP 12.1 - Coastal Tussock Grasslands &	Plant Species Diversity	0		1		2		3		4	5		6	7	8-9	10	11+
Low Open Shrubland of	Weeds	39+	36-	32-	29-	25-	23-	20-	18-	16-	14-	12-	10-	9	7-8	5-6	0-4
Dunes & Cliffs			38	35	31	28	24	22	19	17	15	13	11				
	Native Plant Life Forms	0	1	2	3	4-5	6	7	8	9-11	12- 13	14+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
EP 12.2 - Coastal Shrublands of Stable	Plant Species Diversity	0	1-2	3-4	5	6-7	8	9-10	11	12- 13	14- 15	16- 17	18- 19	20- 23	24- 26	27- 30	31+
Dunes & Cliff-top Dunes	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					
	Regeneration	0		1	2	3	4	5-6	7	8+							
EP 12.3 - Coastal Low & Very Low Woodlands	Plant Species Diversity	0	1-3	4-5	6-7	8-10	11- 12	13- 15	16- 17	18- 20	21- 23	24- 26	27- 29	30- 35	36- 40	41- 46	47+
or Mallee of stable Dunes & Cliff-top	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Dunes	Native Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 20	21+					
	Regeneration	0		1	2	3	4	5-6	7	8+							
EP 12.4 - Coastal Very Low Open Woodlands	Plant Species Diversity	0	1-2	3-4	5	6-7	8	9-10	11	12- 13	14- 15	16- 18	19- 20	21- 24	25- 28	29- 32	33+
& Low Open Shrublands of Cliffs	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					
	Regeneration	0			1	2		3	4	5+							†
EP 13.1 - Low Samphire Shrublands with Tidal	Plant Species Diversity	0				1			2			3		4		5	6
Inundation /Hypersaline Soils	Weeds	24+	22- 23	20- 21	17- 19	15- 16	14	12- 13	11	10	8-9	7	6	5	4	3	0-2
	Native Plant Life Forms	0	1	2	3	4	5	6	7	8-10	11- 12	13+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
EP 13.2 - Samphire or Chenopod Shrublands	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
with Infrequent Inundation /Saline Soils	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	0			1	2		3	4	5+							
EP 13.3 - Swamp Paperbark Low Forest	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
& Tall Shrubland of Saline & Brackish	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Swamps	Native Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0			1	2		3	4	5+							
EP 13.4 - Short-leaf Honey-myrtle Tall	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
Shrubland of Saline & Brackish Swamps,	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Watercourses	Native Plant Life Forms	0	1-2	3-4	5	6-7	8	9	10	11- 13	14- 15	16+					
	Regeneration	0			1	2		3	4	5+							
EP 13.5 - Thatching Grass Sedgelands of	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
Saline & Brackish Swamps	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Native Plant Life Forms	0	1	2	3	4-5	6	7	8	9-11	12- 13	14+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
P 13.6 - Cutting Grass	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
Brackish & Freshwater Swamps, Watercourses	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
•	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
EP 13.7 - Woodlands &	Plant Species	0	1-2	3	4	5-6	7	8-9	10	11-	13-	15	16-	18-	21-	25-	28+
Tall Shrublands of	Diversity									12	14		17	20	24	27	
Brackish & Freshwater	Weeds	53+	49-	44-	40-	35-	32-	29-	26-	23-	21-	18-	16-	13-	11-	7-10	0-6
Swamps			52	48	43	39	34	31	28	25	22	20	17	15	12		
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+					
	Forms							11		15	17						
	Regeneration	0		1	2	3	4	5-6	7	8+							
EP 13.8 - Woodlands &	Plant Species	0	1-2	3-4	5	6-7	8	9-10	11	12-	14-	16-	18-	20-	24-	27-	31+
Shrublands of Brackish	Diversity									13	15	17	19	23	26	30	
& Freshwater	Weeds	53+	49-	44-	40-	35-	32-	29-	26-	23-	21-	18-	16-	13-	11-	7-10	0-6
Watercourses			52	48	43	39	34	31	28	25	22	20	17	15	12		
	Native Plant Life	0	1-3	4	5	6-7	8	9-10	11	12-	15-	17+					
	Forms									14	16						
	Regeneration	0		1	2	3	4	5-6	7	8+							
EP 14 - Mangroves on Intertidal Mudflats	Plant Species Diversity	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB
	Weeds	16+	15	13- 14	12	10- 11		9	8	7	6	5		4	3	2	0-1
	Native Plant Life Forms	0	1	2		3	4	5		6-8	9-10	11+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 1.1 - Open Woodland with Open	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
Arid-adapted Shrub	Weeds	32+	29-	26-	23-	20-	18-	16-	14-	12-	11	9-10	8	6-7	5	3-4	0-2
Understorey on			31	28	25	22	19	17	15	13							
Limestone Plains	Native Plant Life	0	1-3	4	5	6	7	8-9	10	11-	14-	16+					
	Forms									13	15						
	Regeneration	0			1	2		3	4	5+						İ	
MDBSA 1.2 - Tall	Plant Species	0	1-2	3	4	5	6	7	8	9	10	11-	13	14-	16-	19-	21+
Shrubland with Open	Diversity											12		15	18	20	
Arid-adapted	Weeds	32+	29-	26-	23-	20-	18-	16-	14-	12-	11	9-10	8	6-7	5	3-4	0-2
Understorey on			31	28	25	22	19	17	15	13							
Limestone Plains	Native Plant Life	0	1-2	3	4	5	6	7-8	9	10-	13-	15+					
	Forms									12	14						
	Regeneration	0			1	2		3	4	5+						İ	

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MDBSA 1.3 - Grasslands of Arid	Plant Species Diversity	0	1	2	3	4	5	6	7	8	9		10	11- 12	13	14- 15	16+
Open Limestone Plains	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
	Native Plant Life Forms	0	1-2	3		4	5	6	7	8-10	11- 12	13+					
	Regeneration	0			1	2		3	4	5+							
MDBSA 2.1 - Open Mallee / Low Open	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
Woodland with Chenopod Shrub	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
Understorey	Native Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0			1	2		3	4	5+							
MDBSA 2.2 - Chenopod Open Shrublands	Plant Species Diversity	0	1-2	3	4	5	6	7	8	9	10	11	12	13- 14	15- 16	17- 18	19+
	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	0			1	2		3	4	5+							
MDBSA 3.1 - Mallee with Very Open	Plant Species Diversity	0	1-2	3	4	5-6	7	8	9-10	11	12- 13	14	15- 16	17- 19	20- 22	23- 25	26+
Sclerophyll / Chenopod Shrub Understorey	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
	Native Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0			1	2		3	4	5+							
MDBSA 3.2 - Mallee with Open Sclerophyll /	Plant Species Diversity	0	1-2	3-4	5-6	7	8-9	10- 11	12	13- 14	15- 16	17- 19	20- 21	22- 23	24- 26	27- 28	29+
Chenopod Shrub Understorey	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
-	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					
	Regeneration	0			1	2		3	4	5+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MDBSA 3.3 - Mallee	Plant Species	0	1-2	3	4	5-6	7	8	9-10	11	12-	14	15-	17-	20-	23-	26+
with Open Sclerophyll /	Diversity										13		16	19	22	25	
Chenopod shrub	Weeds	32+	29-	26-	23-	20-	18-	16-	14-	12-	11	9-10	8	6-7	5	3-4	0-2
Understorey +/-			31	28	25	22	19	17	15	13							
Triodia Sandy Loam	Native Plant Life	0	1-3	4	5	6-7	8	9-10	11	12-	15-	17+					
Flats/Swales	Forms									14	16						
	Regeneration	0			1	2		3	4	5+							
MDBSA 4.1 - Mallee	Plant Species	0	1-2	3	4	5-6	7	8-9	10	11-	13-	15	16-	18-	21-	25-	28+
with Open Shrub	Diversity									12	14		17	20	24	27	
Understorey on Tall	Weeds	39+	36-	32-	29-	25-	23-	20-	18-	16-	14-	12-	10-	9	7-8	5-6	0-4
Red-sand Dunes/Deep			38	35	31	28	24	22	19	17	15	13	11				
Sand Flats	Native Plant Life	0	1-4	5	6	7-8	9-10	11-	14-	16-	19-	21+					
	Forms							13	15	18	20						
	Regeneration	0			1	2		3	4	5+							
MDBSA 4.2 - Mallee	Plant Species	0	1-2	3	4	5	6	7	8-9	10	11	12-	14	15-	18-	20-	23+
with Understorey	Diversity											13		17	19	22	
Dominated by Triodia	Weeds	39+	36-	32-	29-	25-	23-	20-	18-	16-	14-	12-	10-	9	7-8	5-6	0-4
on Mod/Low Red-sand			38	35	31	28	24	22	19	17	15	13	11				
Dunes /Flats	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12-	14-	17-	19+					
	Forms							11	13	16	18						
	Regeneration	0			1	2		3	4	5+							
MDBSA 4.3 -	Plant Species	0	1-2	3	4	5	6	7	8	9	10	11	12	13-	15-	17-	19+
Shrublands on Low	Diversity													14	16	18	
&/or Isolated Red-sand	Weeds	39+	36-	32-	29-	25-	23-	20-	18-	16-	14-	12-	10-	9	7-8	5-6	0-4
Dunes			38	35	31	28	24	22	19	17	15	13	11				
	Native Plant Life	0	1-3	4	5	6-7	8	9-10	11	12-	15-	17+					
	Forms									14	16						
	Regeneration	0			1	2		3	4	5+							
MDBSA 5.1 - Open	Plant Species	0	1-2	3-4	5-6	7	8-9	10-	12	13-	15-	17-	20-	22-	24-	27-	29+
Mallee with Open	Diversity							11		14	16	19	21	23	26	28	
Sclerophyll Shrub	Weeds	32+	29-	26-	23-	20-	18-	16-	14-	12-	11	9-10	8	6-7	5	3-4	0-2
Understorey on			31	28	25	22	19	17	15	13							
Clay/Clay-loam Flats	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12-	14-	17-	19+					
	Forms							11	13	16	18						
	Regeneration	0			1	2		3	4	5+							1

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MDBSA 5.2 - Mallee with Very Sparse	Plant Species Diversity	0	1	2	3		4	5	6	7	8		9	10- 11	12	13- 14	15+
Sclerophyll Shrub Understorey on	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
Clay/Clay-loam Flats	Native Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0			1	2		3	4	5+							
MDBSA 6.1 - Open Mallee with Mid-dense	Plant Species Diversity	0	1-3	4-5	6-7	8	9-10	11- 12	13- 15	16- 17	18- 20	21- 22	23- 25	26- 30	31- 35	36- 40	41+
Shrub/Tussock Understorey on	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Limestone Soils	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 12	13- 14	15- 18	19- 21	22+					
	Regeneration	0		1	2	3		4	5	6+							
MDBSA 6.2 - Tall Shrublands on	Plant Species Diversity	0	1-2	3-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 20	21- 23	24- 28	29- 32	33- 37	38+
Limestone Soils	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					
	Regeneration	0		1	2	3		4	5	6+							
MDBSA 7.1 - Mallee/Low Woodland	Plant Species Diversity	0	1-4	5-6	7-9	10- 11	12- 14	15- 17	18- 20	21- 23	24- 27	28- 30	31- 34	35- 41	42- 47	48- 54	55+
with Dense Sclerophyll Understorey on Deep	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
White Sand Dunes	Native Plant Life Forms	0	1-5	6-7	8	9-10	11- 12	13- 15	16- 18	19- 21	22- 23	24+					
	Regeneration	0		1	2	3		4	5	6+							
MDBSA 7.2 - Shrublands with Dense	Plant Species Diversity	0	1-3	4-5	6-7	8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 27	28- 33	34- 38	39- 44	45+
Sclerophyll Understorey on Deep	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
White Sand Dunes	Native Plant Life Forms	0	1-5	6-7	8	9-10	11- 12	13- 15	16- 17	18- 20	21- 22	23+					
	Regeneration	0		1	2	3		4	5	6+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MDBSA 7.3 - Mallee	Plant Species	0	1-2	3-4	5	6-7	8	9-10	11	12-	14-	16-	18-	20-	24-	27-	31+
with Dense Broombush	Diversity									13	15	17	19	23	26	30	
Dominated	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Understorey on White			46	42	38	33	29	26	23	20	18	15	13				
Sand	Native Plant Life	0	1-4	5-6	7	8	9	10	11	12-	15-	17+					
	Forms									14	16						
	Regeneration	0		1	2	3		4	5	6+							
MDBSA 7.4 -	Plant Species	0	1-2	3	4	5	6	7	8-9	10	11	12-	14	15-	18-	20-	23+
Broombush Tall	Diversity											13		17	19	22	
Shrublands on White	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Sand Flats			46	42	38	33	29	26	23	20	18	15	13				
	Native Plant Life	0	1-4	5-6	7	8	9	10		11-	14-	16+					
	Forms									13	15						
	Regeneration	0		1	2	3		4	5	6+							
MDBSA 8 - Mallee /	Plant Species	0	1-4	5-6	7-8	9-11	12-	14-	17-	19-	22-	25-	27-	30-	35-	41-	46+
Closed Mallee with	Diversity						13	16	18	21	24	26	29	34	40	45	
Dense Shrub	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Understorey on			46	42	38	33	29	26	23	20	18	15	13				
Shallow Calcareous	Native Plant Life	0	1-5	6	7	8-9	10-	12-	15-	17-	20-	23+					
Sands / Sandy Loam	Forms						11	14	16	19	22						
	Regeneration	0		1	2	3		4	5	6+							
MDBSA 9.1 -	Plant Species	0	1-2	3	4-5	6	7-8	9-10	11-	14-	16-	19-	22-	25-	30-	36-	41+
Woodlands with an	Diversity								13	15	18	21	24	29	35	40	
Open Grassy	Weeds	53+	49-	44-	40-	35-	32-	29-	26-	23-	21-	18-	16-	13-	11-	7-10	0-6
Understorey			52	48	43	39	34	31	28	25	22	20	17	15	12		
	Native Plant Life	0	1-4	5-6	7	8-9	10-	12-	14	15-	18-	20+					
	Forms						11	13		17	19						
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
MDBSA 9.2 - Grass &	Plant Species	0	1-2	3	4	5-6	7	8-9	10-	13-	15-	17-	19-	21-	25-	30-	34+
Mat-rush Sedgelands	Diversity								12	14	16	18	20	24	29	33	
	Weeds	53+	49-	44-	40-	35-	32-	29-	26-	23-	21-	18-	16-	13-	11-	7-10	0-6
			52	48	43	39	34	31	28	25	22	20	17	15	12		
	Native Plant Life	0	1-3	4-5	6	7-8	9	10-	12	13-	16-	18+					
	Forms							11		15	17						
	Regeneration	0			1	2		3	4	5+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MDBSA 10.1 - Freshwater / Brackish	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
Tall Sedgelands +/-	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Emergent Lignum, Red			46	42	38	33	29	26	23	20	18	15	13				<u> </u>
Gum & Cooba	Native Plant Life Forms	0	1-2	3	4	5	6	7	8	9-11	12- 13	14+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 10.2 - Freshwater / Brackish	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
Sedgelands +/-	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Emergent Lignum, Red			46	42	38	33	29	26	23	20	18	15	13				
Gum & Cooba	Native Plant Life Forms	0	1	2	3	4	5	6	7	8-10	11- 12	13+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 10.3 - Freshwater / Brackish	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
Tall Herblands +/-	Weeds	53+	49-	44-	40-	35-	32-	29-	26-	23-	21-	18-	16-	13-	11-	7-10	0-6
Emergent Shrubs &			52	48	43	39	34	31	28	25	22	20	17	15	12		
Trees	Native Plant Life Forms	0	1	2	3	4	5	6	7	8-10	11- 12	13+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 10.4 - Red Gum Woodlands with Dense	Plant Species Diversity	0	1	2	3	4	5	6	7	8	9	10	11	12- 13	14- 15	16- 17	18+
Lignum Shrub	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
Understorey			46	42	38	33	29	26	23	20	18	15	13				
	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	0			1	2		3	4	5+							
MDBSA 10.5 - Red Gum	Plant Species	0	1-2	3	4	5-6	7	8-9	10-	12-	14-	16-	18-	20-	24-	28-	32+
Forests / Woodlands	Diversity								11	13	15	17	19	23	27	31	
-	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
,	Native Plant Life Forms	0	1-3	4-5	6	7-8	9-10	11- 12	13	14- 16	17- 18	19+					
	Regeneration	0			1	2		3	4	5+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MDBSA 10.6 - Lignum Shrublands +/- Red Gum, River Box, Cooba	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Native Plant Life Forms	0	1-3	4-5	6	7	8	9	10	11- 13	14- 15	16+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 10.7 - River Box Woodlands with Open Shrub, Herb and Grassy Understorey	Plant Species Diversity	0	1-2	3-4	5-6	7	8-9	10- 11	12	13- 14	15- 16	17- 19	20- 21	22- 23	24- 26	27- 28	29+
	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Native Plant Life Forms	0	1-3	4-5	6	7-8	9-10	11- 12	13	14- 16	17- 18	19+	-				
	Regeneration	0			1	2		3	4	5+							
MDBSA 10.8 - River Box Woodlands with Saline Tolerant Chenopod Understorey	Plant Species Diversity	0	1-2	3	4	5-6	7	8	9-10	11	12	13	14	15- 16	17- 19	20- 21	22+
	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Native Plant Life Forms	0	1-4	5-6	7	8	9	10	11	12- 14	15- 16	17+					
	Regeneration	0			1	2		3	4	5+							
MDBSA 10.9 - Mallee Box Woodlands on	Plant Species Diversity	0	1	2	3		4	5		6	7		8	9	10- 11	12	13+
Inland Depressions	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Native Plant Life Forms	0	1	2	3	4	5	6	7	8-10	11- 12	13+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 10.10 - Black	Plant Species	0	1	2	3		4	5		6	7	8	9	10-	12	13-	15+
Oak Open Forests of	Diversity													11		14	
Inland Depressions & Drainage Lines	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Native Plant Life Forms	0	1-3	4-5	6	7	8	9	10	11- 13	14- 15	16+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MDBSA 10.11 - Low	Plant Species	0	1	2	3	4	5	6	7-8	9	10	11-	13	14-	17-	19-	22+
Woodlands/	Diversity											12		16	18	21	
Shrublands of River	Weeds	39+	36-	32-	29-	25-	23-	20-	18-	16-	14-	12-	10-	9	7-8	5-6	0-4
Terraces /Inland			38	35	31	28	24	22	19	17	15	13	11				
Drainage Lines	Native Plant Life	0	1	2	3	4-5	6	7-8	9	10-	13-	15+					
	Forms									12	14						
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 11.1 - Low Samphire Shrublands with Tidal Inundation /Hypersaline Soils	Plant Species Diversity	0				1			2			3		4		5	6+
	Weeds	24+	22-	20-	17-	15-	14	12-	11	10	8-9	7	6	5	4	3	0-2
			23	21	19	16		13									
	Native Plant Life	0	1	2	3	4	5	6	7	8-10	11-	13+					
	Forms										12						
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 11.2 - Samphire or Chenopod Shrubland with	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
	Weeds	32+	29-	26-	23-	20-	18-	16-	14-	12-	11	9-10	8	6-7	5	3-4	0-2
Infrequent Inundation/			31	28	25	22	19	17	15	13							
Saline Soils	Native Plant Life	0	1-2	3	4	5	6	7-8	9	10-	13-	15+					
	Forms									12	14						
	Regeneration	0			1	2		3	4	5+							
MDBSA 11.3 - Swamp	Plant Species	0	1-2	3	4	5	6	7	8-9	10	11	12-	14	15-	18-	20-	23+
Paper-bark Low	Diversity											13		17	19	22	
Forests/ Tall	Weeds	32+	29-	26-	23-	20-	18-	16-	14-	12-	11	9-10	8	6-7	5	3-4	0-2
Shrublands Saline/			31	28	25	22	19	17	15	13							
Brackish Swamps	Native Plant Life	0	1-3	4	5	6-7	8	9-10	11	12-	15-	17+					
	Forms									14	16						
	Regeneration	0			1	2		3	4	5+							
MDBSA 11.4 - Short- leaf Honey-myrtle Tall	Plant Species	0	1-2	3	4	5	6	7	8-9	10	11	12-	14	15-	18-	20-	23+
	Diversity		<u>L</u>				<u>L_</u>				<u>L_</u>	13		17	19	22	
Shrubland Saline/	Weeds	39+	36-	32-	29-	25-	23-	20-	18-	16-	14-	12-	10-	9	7-8	5-6	0-4
Brackish Swamp/			38	35	31	28	24	22	19	17	15	13	11	<u>L</u>			
Watercourse	Native Plant Life	0	1-2	3-4	5	6-7	8	9	10	11-	14-	16+					
	Forms									13	15						
	Regeneration	0			1	2		3	4	5+							

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
MDBSA 11.5 - Cutting Grass / Other	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
Sedgelands Saline/ Brackish Swamp/	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
Watercourse	Native Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
MDBSA 11.6 - Semi- saline Shrubland River	Plant Species Diversity	0	1	2	3		4	5	6	7	8	9	10	11- 12	13- 14	15- 16	17+
Cliffs, Floodplain/ Depressions/ Drainage	Weeds	39+	36- 38	32- 35	29- 31	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
Lines	Native Plant Life Forms	0	1-2	3	4	5	6	7	8	9-11	12- 13	14+					
	Regeneration	0			1	2		3	4	5+							
NA 2 in MDBSA - Open Forests /Woodlands	Plant Species Diversity	0	1-3	4-5	6-7	8-10	11- 12	13- 15	16- 17	18- 20	21- 23	24- 26	27- 29	30- 35	36- 40	41- 46	47+
with Mid-dense Shrub & Grassy Understorey	Weeds	48+	44- 47	39- 43	35- 38	30- 34	27- 29	23- 26	20- 22	18- 19	15- 17	13- 14	11- 12	10	8-9	5-7	0-4
	Native Plant Life Forms	0	1-5	6-7	8	9-11	12- 13	14- 16	17- 18	19- 21	22- 23	24+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
KI 1.1 - Woodlands, low woodlands and	Plant Species Diversity	0	1-4	5-6	7-9	10- 11	12- 14	15- 17	18- 20	21- 23	24- 27	28- 30	31- 34	35- 41	42- 47	48- 54	55+
mallee with dense sclerophyll shrub	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
understorey	Plant Life Forms	0	1-5	6-7	8	9-10	11- 12	13- 15	16- 18	19- 21	22- 23	24+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
KI 1.2 - Dense sclerophyll shrublands	Plant Species Diversity	0	1-4	5-6	7-9	10- 11	12- 14	15- 17	18- 20	21- 23	24- 27	28- 30	31- 34	35- 41	42- 47	48- 54	55+
	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21-	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-5	6-7	8	9-10	11- 12	13- 15	16- 17	18- 20	21-	23+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0	1		2	3	4	5-6	7	8+							
KI 2 - Open forests and woodlands with an	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
open sclerophyll shrub understorey	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
KI 3 - Open Forests with a sparse shrub and	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
herbaceous understorey	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
•	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					
	Regeneration	0	1		2	3	4	5-6	7	8+							
KI 4 - Mallee and woodlands with a mid-	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
dense shrub and sedge understorey on	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
limestone based soils	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					
	Regeneration	0	1		2	3	4	5-6	7	8+							
KI 5.1 - Mallee with an open to very open	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
shrub understorey on clay based soils	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
·	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14	15- 17	18- 19	20+					
	Regeneration	0	1		2	3		4	5	6+							
KI 5.2 - Tall Shrublands with an open to very	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
open shrub understorey on clay	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21-	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
based soils	Plant Life Forms	0	1-3	4-5	6	7-8	9	10-	12- 13	14- 16	17- 18	19+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0			1	2	3		4	5+							
KI 6 - Mallee and closed mallee with a	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
very open understorey	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14	15- 17	18- 19	20+					
	Regeneration	0	1		2	3	4		5	6+							
KI 7.1 - Riparian woodlands with an	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
open shrub understorey	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 20	21+					
	Regeneration	0	1		2	3	4	5-6	7	8+							
KI 7.2 - Riparian open forests and woodlands	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
with dense shrub understorey	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
KI 7.3 - Freshwater swamp woodlands and	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
low woodlands	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					
	Regeneration	0	1		2	3	4	5-6	7	8+							
KI 7.4 - Freshwater swamp shrublands	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
•	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21-	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 20	21+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0	1		2	3		4	5	6+							
KI 7.5 - Sedgelands of Brackish & Freshwater	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
Swamps and Watercourses	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
KI 7.6 - Brackish to Saline Tall Shrublands	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
and Low Open Forest	Weeds	40+	36- 39	33- 35	29- 32	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0			1	2	3		4	5+							
KI 7.7 - Samphire low shrublands	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
	Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	0			1	2	3		4	5+							
KI 8.1 - Coastal Tussock Grasslands & Low Open	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
Shrublands of Dunes & Cliff-top dunes	Weeds	25+	23- 24	20- 22	18- 19	15- 17	13- 14	12	10- 11	9	7-8	6	5	4	3	2	0-1
	Plant Life Forms	0	1	2	3	4-5	6	7	8	9-11	12- 13	14+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
KI 8.2 - Coastal Shrublands of stable	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
Dunes & Cliff-top Dunes	Weeds	40+	36- 39	33- 35	29- 32	25- 28	22- 24	20- 21	17- 19	15- 16	13- 14	11- 12	9-10	8	6-7	4-5	0-3
	Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12- 13	14- 16	17- 18	19+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0	1		2	3	4	5-6	7	8+							
KI 8.3 - Coastal Low & Very Low Woodlands	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
or Mallee of stable Dunes & Cliff-top	Weeds	40+	36- 39	33- 35	29- 32	25- 28	22- 24	20- 21	17- 19	15- 16	13- 14	11- 12	9-10	8	6-7	4-5	0-3
Dunes	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 20	21+					
	Regeneration	0	1		2	3	4	5-6	7	8+							
KI 8.4 - Coastal Cliff Very Low Open	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
Woodlands & Low Open Shrublands	Weeds	25+	23- 24	20- 22	18- 19	15- 17	13- 14	12	10- 11	9	7-8	6	5	4	3	2	0-1
	Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					
	Regeneration	0			1	2	3		4	5+							
KI 8.5 - Low Shrublands of Cliff-faces	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
	Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
KI 8.6 - Coastal Very Low Woodlands and	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
Low Mallee with mid- dense sclerophyll	Weeds	40+	36- 39	33- 35	29- 32	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
understorey	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
KI 8.7 - Coastal open forests and woodlands	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
with an open shrub understorey	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
-	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14	15- 17	18- 19	20+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0	1		2	3		4	5	6+							
SE 1.1 - Low Woodlands with a	Plant Species Diversity	0	1-4	5-6	7-9	10- 11	12- 14	15- 17	18- 20	21- 23	24- 27	28- 30	31- 34	35- 41	42- 47	48- 54	55+
dense heath understorey on deep	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
white sands	Plant Life Forms	0	1-5	6-7	8	9-10	11- 12	13- 15	16- 18	19	20- 23	24+					
	Regeneration	0	1		2	3		4	5	6+							
SE 1.2 - Shrublands with a dense heath	Plant Species Diversity	0	1-3	4-5	6-7	8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 27	28- 33	34- 38	39- 44	45+
understorey on white sands	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-5	6-7	8	9-10	11- 12	13- 15	16- 17	18- 20	21- 22	23+					
	Regeneration	0	1		2	3		4	5	6+							
SE 1.3 - Open Mallee and Mallee with a	Plant Species Diversity	0	1-4	5-6	7-9	10- 11	12- 14	15- 17	18- 20	21- 23	24- 27	28- 30	31- 34	35- 41	42- 47	48- 54	55+
dense heath understorey on	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
sandy/loam soils	Plant Life Forms	0	1-5	6-7	8	9-10	11- 12	13- 15	16- 18	19	20- 23	24+					
	Regeneration	0	1		2	3		4	5	6+							
SE 2.1 - Low woodlands over open sclerophyll	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
shrub understorey on sandy loam soils	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
-	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					
	Regeneration	0	1		2	3	4	5-6	7	8+							
SE 2.2 - Open Forests with open shrub ±	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
bracken understorey on sandy to terra rossa	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
soils	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20-	23+			. =		

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0	1		2	3	4	5-6	7	8+							
SE 3.1 - Grassy woodlands on sandy	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
loams/loams	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14	15- 17	18- 19	20+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
SE 3.2 - Grassy woodlands on cracking	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
clay soils	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14	15- 17	18- 19	20+					
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
SE 4.1 - Poa and Spear Grass Grasslands on	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
heavy grey-black soils	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SE 4.2 - Kangaroo Grass Grasslands on heavy	Plant Species Diversity	0	1-2	3	4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 17	18- 19	20- 23	24- 27	28- 31	32+
grey-black soils	Weeds	53+	49- 52	44- 48	40- 43	35- 39	32- 34	29- 31	26- 28	23- 25	21- 22	18- 20	16- 17	13- 15	11- 12	7-10	0-6
	Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SE 5.1 - Woodlands with a seasonally	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
inundated grass and sedge understorey	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21-	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
2	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 20	21+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0	1	2	3	4	5	6-7	8	9+							
SE 5.2 - Open Forests and Woodlands with a	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
seasonally inundated shrub and sedge	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
understorey on sandy soils	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					
	Regeneration	0	1		2	3	4	5-6	7	8+							
SE 5.3 - Seasonally inundated wet heath	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
shrublands	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14	15- 17	18- 19	20+					
	Regeneration	0	1		2	3	4		5	6+							
SE 6.1 - Freshwater Shrublands	Plant Species Diversity	0	1-2	3	4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 17	18- 19	20- 23	24- 27	28- 31	32+
	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12- 13	14- 16	17- 18	19+					
	Regeneration	0			1	2	3		4	5+							
SE 6.2 - Freshwater to Brackish Tall	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
Sedgelands – Bulrush and Common Reed	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-2	3	4	5	6	7	8	9-11	12- 13	14+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SE 6.3 - Freshwater to Brackish Closed Low	Plant Species Diversity	0	1-2	3	4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 17	18- 19	20- 23	24- 27	28- 31	32+
sedgelands	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SE 6.4 - Freshwater to Brackish Cutting Grass	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
Sedgelands	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SE 6.5 - Brackish to saline Thatching Grass	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
Sedgelands	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-2	3	4	5	6	7	8	9-11	12- 13	14+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SE 6.6 - Brackish to Saline Tall Shrublands	Plant Species Diversity	0	1-2	3	4	5	6	7	8-9	10	11	12- 13	14	15- 17	18- 19	20- 22	23+
and Low Open Forest	Weeds	40+	36- 39	33- 35	29- 32	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Plant Life Forms	0	1-3	4	5	6-7	8	9-10	11	12- 14	15- 16	17+					
	Regeneration	0			1	2	3		4	5+							
SE 6.7 - Saline Herblands	Plant Species Diversity	0	1	2	3		4	5		6	7	8	9	10- 11	12	13- 14	15+
	Weeds	40+	36- 39	33- 35	29- 32	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
	Plant Life Forms	0	1	2	3	4-5	6	7	8	9-11	12- 13	14+					
	Regeneration	DNS	DNS	DNS	DNS	DNS	DNS	DNS	DNS	DNS							
SE 6.8 - Saline samphire low shrublands	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
	Weeds	32+	29- 31	26- 28	23- 25	20- 22	18- 19	16- 17	14- 15	12- 13	11	9-10	8	6-7	5	3-4	0-2
	Plant Life Forms	0	1-2	3	4	5	6	7-8	9	10- 12	13- 14	15+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0			1	2	3		4	5+							
SE 7.1 - Coastal Dune Grasslands and Low	Plant Species Diversity	0		1	2		3	4		5	6		7	8	9-10	11	12+
Open Shrublands	Weeds	25+	23- 24	20- 22	18- 19	15- 17	13- 14	12	10- 11	9	7-8	6	5	4	3	2	0-1
	Plant Life Forms	0	1	2	3	4-5	6	7	8	9-11	12- 13	14+					
	Regeneration	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB	SNB							
SE 7.2 - Coastal Dune Shrublands	Plant Species Diversity	0	1-2	3-4	5	6-7	8	9-10	11	12- 13	14- 15	16- 17	18- 19	20- 23	24- 26	27- 30	31+
	Weeds	40+	36- 39	33- 35	29- 32	25- 28	22- 24	20- 21	17- 19	15- 16	13- 14	11- 12	9-10	8	6-7	4-5	0-3
	Plant Life Forms	0	1-3	4-5	6	7-8	9	10- 11	12	13- 15	16- 17	18+					
	Regeneration	0	1		2	3	4		5	6+							
SE 7.3 - Coastal and sub-coastal low	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
woodlands with open grassy understorey	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14- 15	16- 18	19- 20	21+					
	Regeneration	0	1		2	3	4	5-6	7	8+							
SE 7.4 - Coastal mallee and closed mallee with	Plant Species Diversity	0	1-2	3	4-5	6	7-8	9-10	11- 13	14- 15	16- 18	19- 21	22- 24	25- 29	30- 35	36- 40	41+
a very open understorey on sandy	Weeds	40+	36- 39	33- 35	29- 32	25- 28	23- 24	20- 22	18- 19	16- 17	14- 15	12- 13	10- 11	9	7-8	5-6	0-4
soils	Plant Life Forms	0	1-4	5-6	7	8-9	10- 11	12- 13	14	15- 17	18- 19	20+					
	Regeneration	0	1		2	3	4		5	6+							
SE 7.5 - Coastal, Sub- coastal and Inland	Plant Species Diversity	0	1-4	5-6	7-8	9-11	12- 13	14- 16	17- 18	19- 21	22- 24	25- 26	27- 29	30- 34	35- 40	41- 45	46+
Mallee with mid-dense shrub and sedge	Weeds	47+	43- 46	39- 42	34- 38	30- 33	27- 29	24- 26	21- 23	19- 20	16- 18	14- 15	12- 13	11	9-10	6-8	0-5
understorey on calcareous dunes	Plant Life Forms	0	1-5	6	7	8-9	10- 11	12- 14	15- 16	17- 19	20- 22	23+					

Community	Attribute	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Regeneration	0	1		2	3	4		5	6+							
SE 8 - Mallee with an	Plant Species	0	1-2	3-4	5	6-7	8	9-10	11	12-	14-	16-	18-	20-	24-	27-	31+
open shrub	Diversity									13	15	17	19	23	26	30	
understorey on poorly	Weeds	47+	43-	39-	34-	30-	27-	24-	21-	19-	16-	14-	12-	11	9-10	6-8	0-5
drained clay loam to			46	42	38	33	29	26	23	20	18	15	13				
clay soils	Plant Life Forms	0	1-3	4-5	6	7-8	9	10-	12-	14-	17-	19+					
								11	13	16	18						
	Regeneration	0	1		2	3	4		5	6+							

Appendix 7 Standard BAM scoresheet

'Block' worksheet data applies to the Block of vegetation being assessed

Buchland Ass	acoment Coores	a boot	(1) 1 (2) 1 (1) (2024)	
Bushland Ass	essment Scores	sneet	(Version - 1 September 2024)	
Block			ASSESSOR(S)	
Size of Block (Ha)				
Landscapes Region			DATE OF ASSESSMENT	
BCM Region				
IBRA Association				
IBRA Subregion				
Map of the Block	(Including the Sites)		
Landscape C	ontext Scores		% native veg. remaining in IBRA Assoc.	
•			% native veg. remaining in IBRA subregion	/ = 0.00 t-
			0 - 10% = 0.05 pts; >10-20% = 0.04 pts; >20-30%	
			>30-60% = 0.02 pts; > 60 = 0 pts	0
			Score received for both IBRA assoc. and subregion the	an Summeu
Percent Vegetation Cov			% native veg. protected IBRA Assoc.	
*	= 0.02 pts; >10-25% = 0.04		0-10% = 0.03 pts; >10-20% = 0.02 pts; >20-40%	. = 0.01 pt
>25-50% = 0.06 pts; >	50-75% = 0.03 pt; >75-100		400/ 0	
	Score	0	>40% = 0 Score	0
Plank Chama Olympia	wine atom Anna (I we flow C)		Matland or Dinarian Hat the	
Block Shape Cleared pe			Wetland or Riparian Habitat present Riparian zone present (Yes/No) = 0.02 pt	
Cleared Perimeter (m)		0.00	Swamp/wetland present (Yes/No) = 0.03 pts	
Cleared Perimeter to ar			(Swamp/wetland may be +/- riparian zone)	
~0 - 0.03 pts, 0 t0 ~12 =	0.02 pts; 12 to <18 = 0.01 Score	0	Score	0
	3.016		Score	J
Note; Blocks will score a	minimum Landscape Cor	ntext Score of 1	LANDSCAPE CONTEXT SCORE (max 1.25)	1

'Site -Flora Sp.' worksheet, this data applies to the site

Plant Species Recorded (Native and Inter-	oduced)	Liste	Listed Species		Natives only		
Species				Not in		Annual Herbs	Introduced
	Common Name	EPBC	SA	quadrat	Regen	Spring survey	Species

'Site – Fauna Sp.' worksheet, this applies to the site

Threatened or Introduced Animal Species Recorded or Observed (Native and Introduced)		Threatened Species				Introduced
Species	Common Name	EPBC	SA	Past Record	Observed	
			†			

'Site – Scores' worksheet, this applies to the site (in the example below, the **vegetation association includes trees**)

Ve	getation Condition Scores	5					
SITE	:						
всм	COMMUNITY						
VEG	ETATION ASSOCIATION DESCRIPTION						
	OF SITE (Ha)						
SIZL	. Of Officina)						
Bor	nchmarked attributes					Native Plant	Cover
State of the state	ores determined by comparing to a Bend	chmark o	comm	unity)		Life Forms	rating
						Trees > 15m	
Num	ber of Native Species (Minus herbaceous	annuals to	or spri	ng Surveys)	0	Trees 5 - 15 m	
40.0	e Plant Species Diversity Score (max 30) fron	n benchm	ark so	ore		Trees < 5m	
weigi	hted by a factor of 2				#N/A	Mallee > 5m	
						Mallee < 5m	
Num	ber of regenerating native species				0	Shrubs > 2m	
Rege	eneration Score (max 12) from benchmark co	mmunity \	weight	ed by a factor of 1	.5	Shrubs 0.5 - 2m	
					#N/A	Shrubs <0.5m	
						Forbs	
	ed species		ver	Weed Threat	CxI	Mat Plants	
(Тор	5 Cover x Invasiveness)	(m	ax 6)	Rating (max 5)		Grasses > 0.2m	
					0	Grasses < 0.2m	
					0	Sedges > 1m	
					0	Sedges < 1m	
					0	Hummock grasses	
		0.		T1 4	0	Vines, scramblers	
Woo	d Score (max 15) from benchmark communit		ver x	Threat	0	Mistletoe	
VV CC	d Score (max 15) from benchmark community	у			#N/A	Ferns	
						Grass-tree	
						Total	0
				11 2 10			
Nativ	re Plant Life Forms (max 20) from benchmark	score we	eighted	by a factor of 2			#N/A
Nativ	e Plant Life Forms (max 20) from benchmark	score w	eighted	I by a factor of 2			#N/A
	n-Benchmarked Attributes	score w	eighted		munity natu	rally treeless?	#N/A
Nor			eighted	Is the com	munity natu		#N/A
Nor (Scc	n-Benchmarked Attributes	ations)	eighted	Is the com	nber/Debri		#N/A
Nor (Scc	n-Benchmarked Attributes ores determined from direct field observe	ations)	eighted	Is the com Fallen Tin Hollow-be	nber/Debri	s (max 5) s Score (max 5)	#N/A
Nor (Scc	n-Benchmarked Attributes ores determined from direct field observe	ations)	eighted	Is the com Fallen Tin Hollow-be Mature Tr	nber/Debri aring trees ee Score (i	s (max 5) s Score (max 5)	#N/A
Nor (Scc	n-Benchmarked Attributes ores determined from direct field observe	ations)	eighted	Is the com Fallen Tin Hollow-be Mature Tr	nber/Debri aring trees ee Score (i	s (max 5) s Score (max 5) max 8)	#N/A
Nor (Sco	n-Benchmarked Attributes ores determined from direct field observe	ations)	eighted	Is the com Fallen Tin Hollow-be Mature Tr	nber/Debri aring trees ee Score (i	s (max 5) s Score (max 5) max 8)	#N/A
Nor (Sco	n-Benchmarked Attributes ores determined from direct field observ ve:exotic Understorey biomass Score (ma	ations) ax 5)		Is the com Fallen Tir Hollow-be Mature Tr Tree Cand	nber/Debri earing trees ee Score (i opy Cover s	s (max 5) s Score (max 5) max 8) Score (max 5)	#N/A
Nor (Scc Nativ	n-Benchmarked Attributes ores determined from direct field observates ve:exotic Understorey biomass Score (manage) getation Condition Score calculation	ations) ax 5)		Is the com Fallen Tir Hollow-be Mature Tr Tree Cand	nber/Debri earing trees ee Score (i opy Cover s	s (max 5) s Score (max 5) max 8) Score (max 5)	#N/A
Nor (Sco Nativ	n-Benchmarked Attributes ores determined from direct field observative: ve:exotic Understorey biomass Score (mainly) getation Condition Score calculation tive Vegetation Attributes Score = Native	ations) ax 5)	diversit	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand	nber/Debri earing trees ee Score (i opy Cover s	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms	#N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observative: preserve: pre	ations) ax 5) Dn species c	diversit regene	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration	nber/Debri earing trees ee Score (i opy Cover s	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms	#N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the control of the community of the community is naturally treeless this score is setive Vegetation Attributes Score = Native the community is naturally treeless this score is setive Vegetation Attributes Score = (15 - Wester)	ations) ax 5) Dn species company for a multiplied eds) + ((1)	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score eration score - Ti	nber/Debri earing trees ee Score (i opy Cover s	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms and 1.24 Cover Score)exp2/2)	
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observative: preserve: pre	ations) ax 5) Dn species company for a multiplied eds) + ((1)	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score eration score - Ti	nber/Debri earing trees ee Score (i opy Cover s	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms and 1.24 Cover Score)exp2/2)	#N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the control of the community of the community is naturally treeless this score is setive Vegetation Attributes Score = Native the community is naturally treeless this score is setive Vegetation Attributes Score = (15 - Wester)	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observative: petation Condition Score calculation tive Vegetation Attributes Score = Native en timber/debris + Hollow-bearing trees the community Score is Not Benchmarked (the community is naturally treeless this score is attive Vegetation Attributes Score = (15 - Wee ETATION CONDITION SCORE (Positive vegetation Score)	ations) ax 5) Dn species company for a multiplied eds) + ((1)	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score eration score - Ti	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms and 1.24 Cover Score)exp2/2)	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the sec	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observative: petation Condition Score calculation tive Vegetation Attributes Score = Native en timber/debris + Hollow-bearing trees the community Score is Not Benchmarked (the community is naturally treeless this score is attive Vegetation Attributes Score = (15 - Wee ETATION CONDITION SCORE (Positive vegetation Score)	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the sec	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the serving second condition of the second condition of t	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observative: petation Condition Score calculated tive Vegetation Attributes Score = Native en timber/debris + Hollow-bearing trees the community Score is Not Benchmarked (the community is naturally treeless this score is attive Vegetation Attributes Score = (15 - Wee ETATION CONDITION SCORE (Positive vegetation Attributes Plant Species Diversity Weed Score Native Plant Life Forms Regeneration	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the sec	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the serving second condition of the second condition of t	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the serving section of the sec	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observing the serving second condition of the second condition of t	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observative: petation Condition Score calculation tive Vegetation Attributes Score = Native en timber/debris + Hollow-bearing trees the community Score is Not Benchmarked (the community is naturally treeless this score is attive Vegetation Attributes Score = (15 - Wee ETATION CONDITION SCORE (Positive veg Native Plant Species Diversity Weed Score Native Plant Life Forms Regeneration Native:exotic Understorey Biomass Mature Trees Tree Canopy Cover	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A
Veg Posir Falle	n-Benchmarked Attributes pres determined from direct field observative:exotic Understorey biomass Score (mainly see:exotic Understorey biomass Score (mainly see:exotic Understorey biomass Score (mainly see:exotic Understorey biomass Score (mainly Vegetation Attributes Score = Native en timber/debris + Hollow-bearing trees the community Score is Not Benchmarked (the community is naturally treeless this score is sative Vegetation Attributes Score = (15 - Wee ETATION CONDITION SCORE (Positive vegetation Native Plant Species Diversity Weed Score Native Plant Life Forms Regeneration Native:exotic Understorey Biomass Mature Trees Tree Canopy Cover Tree Hollows	ations) ax 5) On species c SNB) for multiplied eds) + ((1) attribute	diversit regene d by 1 0 - Bio	Is the com Fallen Tir Hollow-be Mature Tr Tree Cand y + Regeneration eration this score 29 mass score - Ti 0 - Negative veg	nber/Debri earing trees ee Score (i oppy Cover s in + Native I e is multiplia ree Canopy etation attri	s (max 5) s Score (max 5) max 8) Score (max 5) Plant Life Forms ed 1.24 Cover Score)exp2/2) butes) / 80))	#N/A #N/A

'Site – Scores' worksheet, this applies to the site (in the example below, the **vegetation association is treeless**)

Ve	getation Condition Scores	·						
SITE								
BCM	COMMUNITY							
VEC	ETATION ASSOCIATION DESCRIPTION							
SIZE	OF SITE (Ha)							
Dar	chmarked attributes						Native Plant	Cover
	pres determined by comparing to a Benc	hmark comp	nunit	v)			Life Forms	rating
(000	ores determined by companing to a Bene	minark comm	Turin	<i>y</i> /			Trees > 15m	rating
Num	ber of Native Species (Minus herbaceous a	nnuals for spr	na S	urvevs)	Π	0	Trees 5 - 15 m	
	e Plant Species Diversity Score (max 30) from		-		<u> </u>	Ť	Trees < 5m	
	nted by a factor of 2	benefillark 3	Joie		#N/		Mallee > 5m	
					<i>*************************************</i>		Mallee < 5m	
Num	ber of regenerating native species					0	Shrubs > 2m	
	neration Score (max 12) from benchmark con	nmunity weight	ed by	a factor of 1	.5	Ť	Shrubs 0.5 - 2m	
					#N/	A	Shrubs <0.5m	
							Forbs	
Wee	d species	Cover	We	ed Threat	CxI		Mat Plants	
(Тор	5 Cover x Invasiveness)	(max 6)	Rat	ng (max 5)			Grasses > 0.2m	
						0	Grasses < 0.2m	
			_			0	Sedges > 1m	
			-			0	Sedges < 1m	
			_			0	Hummock grasses	
		Cover x	Thr	at		0	Vines, scramblers Mistletoe	
Wee	d Score (max 15) from benchmark community		11111	aı	#N/	_	Ferns	
	, , , , , , , , , , , , , , , , , , , ,				#14//		Grass-tree	
							Total	0
Nativ	e Plant Life Forms (max 20) from benchmark	score weighte	dby	a factor of 2			Total	#N/A
		**************************************						#N/A
No	n-Benchmarked Attributes			Is the com	munity	natu	rally treeless?	V
	pres determined from direct field observa	ations)				******************	ored for treeless	
•	ve:exotic Understorey biomass Score (ma	,	1	communiti	es or c	omm	unities with only	
	· · · · · · · · · · · · · · · · · · ·		_	emergent t	rees		•	
Veg	etation Condition Score calculatio	n						
1	tive Vegetation Attributes Score = Native		ty +	Regeneration	n + Na	tive F	Plant Life Forms	
Fall	en timber/debris + Hollow-bearing trees							
- If	the community Score is Not Benchmarked (S	SNB) for regen	eratio	n this scor	e is mu	ıltiplie	ed 1.24	
	the community is naturally treeless this score is							#N/A
_	tive Vegetation Attributes Score = (15 - Wee	, ,,			,,		1) / 20))	#N/A
VEG	ETATION CONDITION SCORE (Positive veg	attributes x ((8	30 - N	legative veg	etation	attrik	outes) / 80))	#N/A
	ļ _	Low		Medium	n		High	
	Native Plant Species Diversity							
	Weed Score							
	Native Plant Life Forms							
	Regeneration							
	Native:exotic Understorey Biomass							
	Vegetation Condition Score							

'Site – Scores' worksheet, this applies to the site

Conservation Significance S	core			
Is the vegetation association considered a Threate	ened Ecologica	l community or Ecosyste	m?	Yes/No
State (Provisional List of Threatened Ecosystems	of SA) Rare	community (0.1 pt)		
State (Provisional List of Threatened Ecosystems	of SA) Vulne	rable community (0.2 pt	ts)	
State (Provisional List of Threatened Ecosystems	of SA) Enda ı	ngered community (0.3	ots)	
Nationally (EPBC Act) Vulnerable community (0	0.35 pts)			
Nationally (EPBC Act) Endangered or Critically	Endangered	community (0.4 pts)		
Note; all sites will score a minimum Conservation Si	gnificance Sco	re of 1 Threatene	ed Community Score	1
Number of Threatened Flora Species records				Number
*If a species has both a State (NP&W Act) and I	Vational (EPB	C Act) rating, it's only red	orded for its National re	ating.
State Rare species recorded (1 pt each)				0
State Vulnerable species recorded (2.5 pt each))			0
State Endangered recorded (5 pts each)				0
Nationally Vulnerable species recorded (10 pts	each)			0
Nationally Endangered or Critically endangere	•			0
0 = 0 pts; <2 = 0.04 pts; 2 - <5 =	0.08 pts; 5 - <			0
		Thr	eatened Flora Score	0
Potential habitat for Threatened Fauna Spec	ies (number	observed or previously	recorded)	Number
*If a species has both a State (NP&W Act) and I	Vational (EPB	C Act) rating, it's only red	orded for its National r	
State Rare species observed or locally recorded	(1 pt each)			0
State Vulnerable species observed or locally red				0
State Endangered species observed or locally re	, ,			0
Nationally Vulnerable species observed or local			I (00 - t t-)	0
Nationally Endangered or Critically endangere				0
0 = 0 pts; <2 = 0.02 pts; 2 - <5 =	= 0.04 pts; 5 - <			0
		Inre	atened Fauna Score	0
CONSERVATION SIGNIFICANCE SCORE				1
CONSERVATION SIGNIFICANCE SCORE				'
		Vagatation Condition	v Landagana Canta	rt v
Total Scores for the Site	0	Vegetation Condition	••••••	x
LANDSCAPE CONTEXT SCORE	Score 1.00	Conservation Signific UNIT BIODIVERSIT		#N/A
VEGETATION CONDITION SCORE	#N/A			πIVA
CONSERVATION SIGNIFICANCE SCORE	1.00	Total Biodiversity S		#81/4
CONSERVATION CIGNII ICANOL GOOKE	1.00	(Biodiversity Score	e x nectares)	#N/A
Photo Point and Vegetation Survey Location			Direction of the Phot	to.
Filoto Form and Vegetation Survey Location			Direction of the Filot	
			GPS Reference	
			Zone (52, 53 or 54)	
			Easting (6 digits)	
			Northing (7 digits)	
			Description	
Incort Dhotonoint	Dhata			
Insert Photopoint	FIIOLO			

'Clearance Assessment Summary' worksheet, this applies to the site when assessing for a clearance application (figures are relevant for period starting 1 Sept 2024)

SEB Offset Calculations						
(when assessing a proposed clearance site)						
SEB Points required for offset						
Loss Factor						
Loadings for clearance of protected areas						
Reductions for rehabilitation of impact site						
SEB Uplift Factor	1.10					
Total SEB Points Required	#N/A					
SEB - Payment in the Native Vegetation	Fund					
SEB Points of Gain/ha Factor	7.5					
Approximate SEB hectares required	#N/A					
Management Cost Factor (\$/ha)	\$24,764					
Economies of Scale Factor						
Mean annual rainfall for the site (mm)						
Payment into the Fund (GST exclusive)	#N/A					
Administration fee (GST inclusive)	#N/A					
Total Payment Required	#N/A					

'SEB Assessment Summary' worksheet, this applies to the site when assessing a proposed SEB area; questions adjust the SEB points provided for sites with non-standard protection or management

SEB Points Provided Calculations		
Answer these questions when assessing a site withi	n a proposed SFB area	
Refer to the SEB Guide (section on 'Adjust the SEB Points of Ga		
Assessment of SEB site - On ground		
What is the risk of decline or loss of vegetation in the next 20 year	ars?	
Has stock grazing been absent from the site for 10 or more years NVC)?		
Is the land subject to zoning or a dedication that is generally rest zone, recreation or open space zoning or crown land dedication)?		
There are no, or only very minimal, threats identified that would re (excluding threats beyond the control of the SEB offset provider s	<u> </u>	
Is the land subject to legally binding obligations (contractual or le the native vegetation (e.g. restricts the use of the land or prevents to the protections provided by the Native Vegetation Act 1991?	gislated) that provide an existing level of protection for	
Likely % Loss	#N/A	Standard
•		
Will the proposed SEB area be subject to management actions to requirements as set out in the SEB Policy?	hat are clearly and significantly in excess of the star	ndard
Will a very high standard of revegetation be conducted, including species diversity which would be expected within the relevant veg present) represented including grasses, sedges, herbs and grour	getation community, and all strata (which should be	
Will fencing be installed (in excess of the standard stock exclusi excessive herbivory by native and introduced fauna?		
Will intensive and substantial management of threatened flora or	fauna be undertaken which is not required in	
association with the proposed clearance for which the SEB is be	ing provided?	
Are the proposed management actions and their scale of impact	already required by duty of care or legislation?	
Only minimal management actions have been committed to in th control of species declared for control under the Landscapes SA	e proposed SEB management plan, such as minimal	
Are the management interventions practically difficult to achieve	or is the recovery of the vegetation likely to be inh	nibited in
some way?		
Are there management issues, beyond the control of the SEB off to address preventing them from being managed to their fullest praccess terrain)?		
Are there physical or environmental constraints which are likely t	o significantly impede the rehabilitation of vegetation	
and slow the rate of recovery? This may include compacted soils	* , * *	
issues) where the issue will continue or increase, significant eros vegetation or extensive die-back or plant diseases.	sion that cannot be controlled without impacting native	
Likely Improvement Due to Management	#N/A	Standard
In relation to sites requiring substantial revegetation, is it highly	likely that a good outcome will be achieved?	
Does the applicant (or site manager/contractor) have significant edelivering habitat reconstruction (revegetation) projects?		
Are there other risk factors which make the outcome uncertain? Is the applicant proposing novel management actions and the outpose risks to the delivery of the offset that are not already addres	tcomes are uncertain? Are there other issues that	
Likelihood of Achieving the Outcome	#N/A	Standard
·	mun	Januara
Future Negative UBS Score #N/A Future Positive UBS Score #N/A		
UBS Gain Score #N/A		
Estimate of SEB Points provided #N/A		
This is an estimate only and will be subject to review and verification	by the Native Vegetation Council.	
If you answered 'yes' to any question, provide justification in the Data	Report	

Appendix 8 Modified BAM < 0.5 ha (small sites) scoresheet

'Block' worksheet applies to the Block of vegetation (this may include multiple small sites in close proximity).

Bushland Assessment Scoresh	neet (Sma	Il Sites)	(Version - 1 Se	pt 2024)		
Block		ASSESSOR(S)	1			
Size of Block (ha)						
Landscapes Region		DATE OF ASSESSMENT				
IBRA Association						
IBRA Subregion						
Map of the Block (Including the Sites)						
		0/	74 A			
Landscape Context Scores		% native veg. remaining in IBI				
-		% native veg. remaining in IBF	_	, , , , ,		
		0 - 10% = 0.05 pts; >10-20% =				
		>30-60% = 0.02 pts; > 60 = 0 p	000.0	0		
Percent Vegetation Cover (5km radius) (%)		Score received for both IBRA ass	oc. and subregion an	u summed		
0-5% = 0 pts; >5-10% = 0.02 pts; >10-25% = 0.04 p		0/	A			
>25-50% = 0.06 pts; >50-75% = 0.03 pt; >75-100%	= 0 pts	% native veg. protected IBRA				
Score	0	0-10% = 0.03 pts; >10-20% =	0.02 pts; >20-40%	= 0.01 pt;		
		>40% = 0	Score	0		
Block Shape Cleared perimeter:Area (km/km2)						
Cleared Perimeter (m) =		Wetland or Riparian Habitat p				
Cleared Perimeter to area ratio	0.00	Riparian zone present (Yes/No	· · · · · ·			
<6 = 0.03 pts; 6 to <12 = 0.02 pts; 12 to <18 = 0.01 pt		Swamp/wetland present (Yes/	' ' L			
Score	0	(Swamp/wetland may be +/- ri	parian zone)			
			Score	0		
Note: Placks will score a minimum Landagar - Canta	vt Score of 1	I ANDSCADE CONTEXT CO	OBE (may 4 35)	1		
Note; Blocks will score a minimum Landscape Conte	xi Score of 1	LANDSCAPE CONTEXT SO	JUKE (max 1.25)	1		

'Site - Flora Sp.' worksheet applies to the site

troduced)	Threat	ened Sp.	
			Introduced
Common Name	EPBC	SA	Species
	Common Name		

'Site - Fauna Sp.' worksheet applies to the site

Threatened or Introduced Animal Species Recorded or Observed		Threatened Species			Introduced
Species Name	Common Name		SA S	Past Record	
		+			
		+ +			
		+			
		+			
		\rightarrow			

'Site – Scores' worksheet – this applies to the site level (or multiple small sites in close proximity) where the **vegetation association includes trees**

Vegetati	on Condition Scores				
SITE:					
VEGETATION	ASSOCIATION DESCRIPTION				
SIZE OF SITE	: (Ha)				
			Paganaration		
	species diversity rsity of species present in the site as a	proportion	Regeneration		
	be expected in a vegetation of that con		No regeneration present (0 F		
very good cond	dition (approaching a pre-European stat		Very low regeneration, cons juvenile plants of a limited n		
<5% (3 Points	•		points)	- ti	
5-10% (6 Poin	77.1. 1		Regeneration present, consi individual juvinile plants but		
11 - 20% (9 Pc	1-1-0-1000-1-10		species (6 points)	a minica namber or	
21 - 30% (12 F			, , , , , , , , ,		
31 - 40 % (15			Multiple species regenerating	g, but low numbers	of _
41 - 50% (18 F			juvenile plants (9 points) Multiple species regenerating	with multiple individ	uol
51 - 60% (21 F	S. (A. O.) (C. O.) (C. O.)		juviniles present with varying		
61 - 70% (24 F 71 - 80% (27 F	•		Regeneration Score (Max 12		0
>80% (30 Poir	9.50		regeneration ocore (wax 12	-)	
	species diversity score (max score of	f 30) 0	Native Plant life form		
			All strata of vegetation heavi	ly impacted and na	tive
Weed Scores			vegetation represented by or	nly scattered plants	(4
and the second s	contain plant species declared under th	ne 🗆	points)	aka daa Maribaa daa d	
	r all declared weeds (max of 6)		All strata of vegetation impa structural diversity, largely u		and \square
		, d	reduced vegetation cover (8	~	and _
	contain environmental weeds (introduce e capacity to invade and exclude native	_	At least one strata of vegeta		
	bushland. This typically includes specie	es 🗆	impacted, with reduced stru	ctural diversity, eler	
The second secon	eed threat rating of 3, 4 or 5). (1 Point)		may be missing (such as pl		
0			specific structural features e		9
	r all environmental weeds (max of 6) (max score of 15)	15	shrubs) and reduce vegetation		
Weed Score	(max score or 13)	13	Limited impacts on native ve		
Is the commu	nity naturally treeless?		of structural features and a vonly a minor loss in structur		
	Score (max 8)		cover or structural elements		ation
Fallen timber	r/debris (max 5)		All strata of vegetation prese		of
Hollow-beari	ng trees Score (max 5)		disturbance. A variety of life		
Tree Canopy	Cover Score (max 5)		age classes present. Veget	ation cover near	
			complete (20 points)		
Native:exotic	Understorey biomass score (max 5)	Native Plant life form score (max 20)	0
Vegetation	Condition Score calculation				
	etation Attributes Score = Native spe	cies diversity	+ Regeneration + Native Plant	Life Forms + Matur	re Trees +
	debris + Hollow-bearing trees		•		
	ity is naturally treeless this score is multip	ALCO DESCRIPTION OF THE PROPERTY OF THE PROPER			0.00
	tation Attributes Score = (15 - Weeds)				50.00
VEGETATION	CONDITION SCORE (Positive veg att	ributes x ((Ne	gative vegetation attributes + 6	0) / 80))	0.00
		Low	Medium	High	
	Native Plant Species Diversity				
	Weed Score				
	Native Plant Life Forms				
	Regeneration				
	Native:exotic Understorey Biomass				
	Tree Canopy Cover Score				
	Mature Tree Score				
	Tree Hollows				
	Fallen timber				
	Vegetation Condition Score				

'Site – Scores' worksheet, this applies to the site (or multiple small sites in close proximity) where the **vegetation** association is naturally treeless

Vegetation Condition Scores				
SITE:				
VEGETATION ASSOCIATION DESCRIPTION				
SIZE OF SITE (Ha)				
		In		
Native Plant species diversity Score the diversity of species present in the site as a	nroportion	Regeneration		
to what would be expected in a vegetation of that cor		No regeneration present (0 Points)		
very good condition (approaching a pre-European sta		Very low regeneration, consisting of hig		
<5% (3 Points)		juvenile plants of a limited number of sp points)	ecies (3	
5-10% (6 Points)	H	Regeneration present, consisting of mul	Itiple	
11 - 20% (9 Points)		individual juvinile plants but a limited nu		
21 - 30% (12 Points)		species (6 points)		
31 - 40 % (15 Points)	ī	Multiple species regenerating, but low n	numbers of	
41 - 50% (18 Points)		juvenile plants (9 points)	idifibers of	
51 - 60% (21 Points)		Multiple species regenerating with multipl	e individual	
61 - 70% (24 Points)		juviniles present with varying age classes	(12 points)	
71 - 80% (27 Points)		Regeneration Score (Max 12)		0
>80% (30 Points) Native Plant species diversity score (max score o	f 20)	Notice Disease life forms		
Native Plant species diversity score (max score o	of 30) 0	Native Plant life form All strata of vegetation heavily impacted	and native	
Weed Scores		vegetation represented by only scattere		
Does the site contain plant species declared under the	he 🔲	points)		_
Landscape SA Act 2019 (1.5 points)		All strata of vegetation impacted with lin	nited	
Cover rating for all declared weeds (max of 6)		structural diversity, largely uniform age	classes and	
Does the site contain environmental weeds (introduce		reduced vegetation cover (8 points)		
plants with the capacity to invade and exclude native		At least one strata of vegetation has be impacted, with reduced structural divers		
species from bushland. This typically includes specie with a BCM weed threat rating of 3, 4 or 5). (1 Point)		may be missing (such as plant species		
with a Bow weed threat fathing of 5, 4 of 5). (11 offic)		specific structural features e.g. sedges		
Cover rating for all environmental weeds (max of 6)		shrubs) and reduce vegetation cover (12	2 points)	
Weed Score (max score of 15)	15	Limited impacts on native vegetation, wi	ith a diversity	
		of structural features and a varied age c		
Is the community naturally treeless? Tree attributes not scored for	V	only a minor loss in structurally diversity	y, vegetation	
treeless community		cover or structural elements (16 points)		
incoloco community		All strata of vegetation present, little or disturbance. A variety of life forms and a		
		age classes present. Vegetation cover i		
		complete (20 points)		
Native:exotic Understorey biomass score (max 5	5)	Native Plant life form score (max 20)		0
Variation Candition Case adoubtion				
Vegetation Condition Score calculation Positive Vegetation Attributes Score = Native spe	aiaa disercity	+ Degeneration + Notice Plant Life Forms	+ Matura Trac	vo +
Fallen timber/debris + Hollow-bearing trees	cles diversity	+ Negerieration + Native Flant Life Forms	+ Mature Tree	35 T
If the community is naturally treeless this score is multip	olied by 1.24		1	0.00
Negative Vegetation Attributes Score = (15 - Weeds)				50.00
VEGETATION CONDITION SCORE (Positive veg att	ributes x ((Neg	gative vegetation attributes + 60) / 80))		0.00
	Low	Medium High		
Native Plant Species Diversity				
Weed Score				
Native Plant Life Forms				
Regeneration				
Native: exotic Understorey Biomass				
Vegetation Condition Score				

'Site – Scores' worksheet, this applies to the site (or multiple small sites in close proximity)

Conservation Significance Score								
Is the vegetation association considered a Threatened Ecological c	community or Ecosystem?	Yes/No						
State (Provisional List of Threatened Ecosystems of SA) Rare co	ommunity (0.1 pt)							
State (Provisional List of Threatened Ecosystems of SA) Vulnera	ible community (0.2 pts)							
State (Provisional List of Threatened Ecosystems of SA) Endang	ered community (0.3 pts)							
Nationally (EPBC Act) Vulnerable community (0.35 pts)								
Contains a Nationally (EPBC Act) Endangered or Critically End	langered community (0.4 pts)							
Note; all sites will score a minimum Conservation Significance Score	of 1 Threatened CommunityScore	1						
Number of Threatened Flora Species recorded for the site (within the site)	Number						
*If a species has both a State (NP&W Act) and National (EPBC)	Act) rating, it's only recorded for its National i	rating.						
State Rare species recorded (1 pt each)								
State Vulnerable species recorded (2.5 pt each)		0						
State Endangered recorded (5 pts each)		0						
Nationally Vulnerable species recorded (10 pts each)		0						
Nationally Endangered or Critically endangered species recor		0						
0 = 0 pts; <2 = 0.04 pts; 2 - <5 = 0.08 pts; 5 - <10		0						
	Threatened Flora Score	0						
Potential habitat for Threatened Fauna Species (number ob	served or previously recorded)	Number						
*If a species has both a State (NP&W Act) and National (EPBC)								
State Rare species observed or locally recorded (1 pt each)		0						
State Vulnerable species observed or locally recorded (2.5 pt ea	ich)	0						
State Endangered species observed or locally recorded (5 pt ea	,	0						
Nationally Vulnerable species observed or locally recorded (10 p		0						
Nationally Endangered or Critically endangered species obser		0 0						
0 = 0 pts; <2 = 0.02 pts; 2 - <5 = 0.04 pts; 5 - <10		0						
	Threatened Fauna Score	0						
CONSERVATION SIGNIFICANCE SCORE		1						
T . 10	Vegetation Condition x Landscape Con	tevt v						
Total Scores for the Site	Conservation Significance =	IICAL A						
LANDSCAPE CONTEXT SCORE 1.00	UNIT BIODIVERSITY SCORE	0.00						
VEGETATION CONDITION SCORE 0.00	Total Biodiversity Score							
CONSERVATION SIGNIFICANCE SCORE 1.00	(Biodiversity Score x hectares)	0.00						
Photo Point and Vegetation Survey Location	Direction of the Phot	to						
	GPS Reference							
	Datum							
	Zone (52, 53 or 54)							
	Easting (6 digits)							
	Northing (7 digits)							
	Description							
lace of Dheta Here								
Insert Photo Here								

'Clearance Assessment Summary' worksheet, this applies to the site (or multiple small sites in close proximity) when assessing a clearance application

SEB Offset Calculations	
(when assessing a propose	d clearance site)
SEB Points required for offset	
Loss Factor	
Loadings for clearance of protected areas	
Reductions for rehabilitation of impact site	
SEB Uplift Factor	1.10
Total SEB Points Required	0.00
Total OLD Tollito Required	0.00

SEB - Payment in the Native Vegetation	Fund
SEB Points of Gain/ha Factor	7.5
Approximate SEB hectares required	0.00
Management Cost Factor (\$/ha)	\$24,764
Economies of Scale Factor	
Mean Annual rainfall for the site (mm)	
Payment into the Fund (GST exclusive)	\$0.00
Administration fee (GST inclusive)	\$0.00
Total Payment Required	\$0.00

'SEB Assessment Summary' worksheet, this applies to the site (or multiple small sites in close proximity) when assessing a proposed SEB area

SEB Points Provided Calculations	
Answer these questions when assessing a site within a proposed SEB area	
Refer to the SEB Guide (section on 'Adjust the SEB Points of Gain') for more information	
Assessment of SEB site - On ground What is the risk of decline or loss of vegetation in the next 20 years?	
Has stock grazing been absent from the site for 10 or more years (and cannot be introduced without approval from the	
NVC)?	
Is the land subject to zoning or a dedication that is generally restrictive of development activities (e.g. conservation	
zone, recreation or open space zoning or crown land dedication)?	
There are no, or only very minimal, threats identified that would result in the decline of the vegetation condition (excluding threats beyond the control of the SEB offset provider such as climate change).	
Is the land subject to legally binding obligations (contractual or legislated) that provide an existing level of protection for	Ar .
the native vegetation (e.g. restricts the use of the land or prevents the vegetation from being harmed) that is additional	,
to the protections provided by the Native Vegetation Act 1991?	
	·
Likely % Loss 7.5	% Standard
Will the proposed SEB area be subject to management actions that are clearly and significantly in excess of the s	andard
requirements as set out in the SEB Policy?	
Will a very high standard of revegetation be conducted, including the establishment of a very high proportion of the	
species diversity which would be expected within the relevant vegetation community, and all strata (which should be present) represented including grasses, sedges, herbs and ground cover plants?	
Will fencing be installed (in excess of the standard stock exclusion fencing) in order to exclude introduced species or	
excessive herbivory by native and introduced fauna?	
Will intensive and substantial management of threatened flora or fauna be undertaken which is not required in	
association with the proposed clearance for which the SEB is being provided?	
Are the proposed management actions and their scale of impact already required by duty of care or legislation?	
Only minimal management actions have been committed to in the proposed SEB management plan, such as minima	
control of species declared for control under the Landscapes SA Act 2019.	
Are the management interventions practically difficult to achieve or is the recovery of the vegetation likely to be i	nhihited in
some way?	mnorted m
Are there management issues, beyond the control of the SEB offset provider, that are technically or practically difficu	t
to address preventing them from being managed to their fullest possible extent (e.g. weed infestations within difficult t	0
access terrain)? Are there physical or environmental constraints which are likely to significantly impede the rehabilitation of vegetation	
and slow the rate of recovery? This may include compacted soils or altered soil chemistry (e.g. high nutrients/salinity	
issues) where the issue will continue or increase, significant erosion that cannot be controlled without impacting nativ	e
vegetation or extensive die-back or plant diseases.	
Likely Immyeye ment Due to Managament	.0 Standard
	Januaru
In relation to sites requiring substantial revegetation, is it highly likely that a good outcome will be achieved?	
Does the applicant (or site manager/contractor) have significant experience and capability with sufficient resources in	
delivering habitat reconstruction (revegetation) projects?	
Are there other risk factors which make the outcome uncertain? NVB assessment only	
Is the applicant proposing novel management actions and the outcomes are uncertain? Are there other issues that	
pose risks to the delivery of the offset that are not already addressed by the above questions?	
Likelihood of Achieving the Outcome 10.0	% Standard
Future Negative UBS Score 0.00	
Future Positive UBS Score 1.60	
UBS Gain Score 1.60	
Estimate of SEB Points provided 0.00	
This is an estimate only and will be subject to review and verification by the Native Vegetation Council.	
If you answered 'yes' to any question, provide justification in the Data Report	

Appendix 9 Remnancy and % native vegetation protected values

Statistics are by IBRA Association. These statistics were derived by combining the IBRA layers with existing DEW spatial datasets from EGIS SDE. Figures have been calculated with zero decimal places. Areas which are less than one hectare or percentages less than one may have been subject to rounding and will appear as 0.

Note: IBRA Associations in **red** are from version 7, while IBRA Associations in black are version 6 for areas not updated in version 7

IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected
Acraman	92	23	Cooper Creek	100	42	Keith	3	39	Mundawatana	100	0	Stony Desert	100	0
Adelaide Foothills	1	32	Coorangie	9	60	Kerby Hill	13	0	Mungerowie	87	25	Streaky Bay	35	15
Aldinga	3	44	Coorong	26	82	Kimba	16	31	Murtho	32	3	Strzelecki Desert	100	21
Allendale	3	9	Cooryanna	99	0	Kiona	25	0	Musgrave	100	17	Stuart Creek	100	0
Alma	3	7	Coranda	28	17	Konetta	2	9	Nangwarry	13	63	Sundown	100	0
Amberley	21	8	Corkscrew	100	58	Kongal	3	3	Naracoorte	18	51	Sutherlands	47	0
Ammaroodinna	100	5	Comy	15	6	Koolcutta	100	0	Naranga	6	18	Tarcowie	26	1
Anabama	100	0	Corrabinnie	92	92	Koonamore	100	0	Narina	100	0	Tarlee	5	10
Andamooka	98	0	Cortina	21	33	Koongawa	35	49	Narrung	12	18	Tarracalena	100	0
Angas Plains	5	9	Cradock	65	0	Kooree	100	0	NCP02- Naracoorte	17	56	Tartwaup	1	9
Angle Rock	5	15	Crystal Brook	2	1	Kroonilla	99	72	NCP03- Naracoorte	18	49	Terowie	86	1
Apoinga	19	0	Culburra	1	0	Kunlara	9	37	Neales Flat	8	6	The Big Desert	71	92
Appila	1	0	Cummins	4	0	Kyancutta	17	0	Nene Valley	39	33	Thurlga	93	0
Arden	95	2	Curnamona	100	0	Kybunga	1	0	Newland	52	77	Tilley Swamp	33	60
Arkaba	64	1	Cygnet	27	2	Kybybolite	4	15	Noolook	17	19	Tintinara	6	0
Arthurton	2	2	Darke Peak	23	39	Labyrinth	93	0	Nullarbor	100	68	Tiverton	100	0
Avenue Plains	10	18	Davenport	100	0	Lake Alexandrina	11	3	Numulta	17	10	Tooligie	3	0
Avoid Bay	71	87	Deep Creek	35	62	Lake Eyre	9	43	Nurom	5	0	Torrens	2	51
Bagot	100	44	Dingo	100	21	Lake Frome	44	15	Nurrari	88	0	Towitta	7	0
Balcanoona	100	10	Dismal Swamp	8	51	Lake George	11	35	Oakden	100	0	Tregolana	96	2
Bald Hill	30	0	Douglas	99	0	Lake Gilles	85	56	Officer	100	0	Triple Hill	30	0
Bamboo Swamp	100	0	Drummond	44	19	Lake Hawdon	8	23	Okaralnga	100	62	Uno Range	100	0
Bandon	5	28	Duck Island	29	56	Lake Leake	17	0	Old Telechie	100	0	Uraidla	26	20
Bangham	17	45	Eden Valley	6	3	Lake Phillipson	99	0	Oolarinna	100	0	Urania	6	6
Bare Hill	25	27	Ediacara	100	2	Lake Wright	100	88	Orama	99	0	Uro	99	0
Barilla	100	0	Edillie	13	17	Lincoln	84	77	Oraparinna	100	18	Victoria Desert	100	39
Barossa	7	9	Erragoona	100	91	Lock	5	22	Outouie	100	13	Walalkaranya	100	29
Barrata	96	0	Evelyn Creek	100	10	Lower Murray	8	0	Pallamana	6	19	Walatajaranja	100	47
Barung	4	0	Everard	12	66	Loydella	9	37	Palthrubie	98	1	Walgidya	100	1
Beachport	43	63	Faraway Hill	100	0	Lucindale	17	31	Para	31	38	Wallabyng	99	0
Benagerie	100	0	Finke	100	34	Mabel Creek	99	4	Parcoola	86	7	Walloway	69	0

IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected
Benda Range	100	0	Fleurieu	19	43	Macfarlane	22	0	Parham	44	7	Wandery Hill	99	1
Bight	78	10 0	Florieton	99	0	MacGillivray	26	39	Parlue	100	0	Warburton	100	0
Billiatt	44	77	Fords Lagoon	100	0	Magnacowie	100	0	Parndana	52	68	Waretta	13	0
Bimbowrie	100	0	Freeling	3	0	Mahanewo	99	0	Pata	7	9	Warraweena	100	26
Birthday Dam	100	0	Fyne	95	33	Malata	27	1	Patchawara	100	93	Warrida	100	0
Blanchetown	67	22	Gairdner	9	73	Mallala	3	2	Peake Bay	16	6	Waulalumbo	98	0
Bleasdale	3	13	Gairloch Dam	100	1	Manarrina	100	0	Peake Creek	100	0	Weetulta	10	1
Blue Range	47	68	Gammon	100	90	Mann Range	99	7	Peaked Hill	100	0	Wellington	4	7
Bob Tiers	29	33	Gantheaume	88	76	Maralinga	100	0	Pendleton	10	9	Wharminda	9	3
Bookabie	58	54	Gawler	100	9	Marble Range	41	40	Penola Station	5	1	White	92	0
Bool Lagoon	8	56	Giddi Giddinna	82	0	Marree	99	1	Pernatty	24	0	Elephant Whyalla	95	3
Boor Plain	3	5	Giles	100	79	McLochlan	68	61	Petermorra	99	0	Wiawera	100	0
Boowillia	3	0	Glencoe	0	15	Merna Mora	93	0	Pine Lodge	100	55	Creek William Creek	98	2
Bordertown	4	6	Glendamboo	96	0	Merninie	100	10	Pine Valley	100	2	Willochra	58	0
Brachina	97	0	Glendella	28	13	Messenger	32	50	Piniewirie	100	0	Willouran	100	0
Breakaway	100	9	Glenroy	0	0	Messent	34	68	Pinkawillinie	42	54	Wilpena	96	39
Brimpton	16	0	Goolwa	9	6	Middleback Range	96	5	Pinnaroo	1	23	Wilyunpa	100	0
Buckalowie	100	0	Greenly	31	12	Midgee	61	56	Polda	45	16	Wipipipee	99	0
Buckaringa	98	5	Hahndorf	8	6	Mongalata	90	12	Polda	46	17	Wirrabara	9	1
Buckleboo	99	12	Hambidge	28	74	Moochra	93	0	Pootkamaunta	99	4	Wirrangula	100	0
Bull Knob	21	21	Hansen	3	1	Moolooloo	100	0	Port Macdonnell	14	65	Wirrealpa	100	0
Bumbunga	17	0	Harper	99	0	Moondiepitch nie	100	0	Port Pirie	51	3	Wirreanda	4	14
Bunda	99	99	Hesso	97	0	Moorlands	5	26	Punthari	18	13	Wirrula	18	14
Bundara	99	0	Hincks	82	92	Mopami	6	2	Purananja	100	10 0	Woakwine	7	21
Burra Hill	45	5	Holder	18	31	Morambro	0	0	Purndu	100	44	Wokurna	3	19
Butler	7	0	Hopeless	100	0	Mt Burr	13	85	Quom	71	1	Wood Hill	9	23
Byilcaoora	100	0	Hypurna	99	10 0	Mt Compass	13	27	Red Rock	100	3	Woolawae	12	0
Callendale	14	21	Ilkina	76	19	Mt Cooper	20	7	Reedbeds	0	0	Woomera	98	0
Cannawigara	10	41	Illbillee	100	0	Mt Dampier	20	26	Renmark	58	32	Worumba	95	0
Canopus	100	45	Inakoo Hill	100	0	Mt Davies	100	10 0	Rosedale	5	11	Wychinga	100	0
Cantana	17	59	Inkster	58	33	Mt Desperate	38	16	Rufus	9	0	Yacka	3	1
Carcuma	48	78	Inman Valley	11	28	Mt Gambier	1	0	Ruthven	8	46	Yalarna	68	82
Caroline	7	83	Innes	52	49	Mt Gawler	9	2	Salt Creek	53	0	Yalata	100	10 0
Cave Hill	100	19	Iron Knob	100	0	Mt Margaret	100	0	Sandergrove	11	26	Yalunda	20	9
Ceduna	46	23	Ironstone Hill	99	4	Mt Marsden	26	2	Sandleton	24	6	Yarra Wurta	99	0
Chintumba	96	91	Irrapatana	96	0	Mt Mary	75	1	Sarah	99	0	Yarramba	100	0
Chitaminga	99	1	Isabella	16	8	Mt Misery	12	12	Scotts Hill	10	5	Yeelanna	2	0

IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected	IBRA Association Name	% Veg Cover	% Veg Protected
Clare	8	3	Jacks Hill	27	88	Mt Rapid	9	7	Scrubby Peak	72	38	Yellabina	99	57
Clarendon	34	27	Jarret	100	0	Mt Remarkable	79	23	Sedan	45	19	Yeltana	80	1
Cleve	17	17	Jungle Dam	100	0	Mt Sir Thomas	100	74	Seymour	10	15	Yerda	100	13
Cobbler Hill	49	21	Jussieu	95	10 0	Mt Terrible	41	41	Shearers Hill	21	4	Yerelina	100	11
Cockburn	100	0	Kadlongaroo	100	0	Mt Wilson	6	4	Simmens	99	0	Yongala	10	0
Coffin Bay	87	10 0	Kallakoopah	93	61	Mt. Gunson	96	0	Simpson Desert	100	84	Yorketown	10	5
Coolatoo	36	52	Kallora	3	1	Muckera	100	47	Stockport	4	0	Yudnamutan a	100	0
Coonalpyn	10	46	Kappawanta	78	41	Mulgarie	99	0	Stokes Bay	54	44	Yudnapinna	100	0
Coonawarra	0	0	Karoonda	6	25	Muloorina	98	0	Stonefield	30	1	Yunta	100	0

Appendix 10 Weed threat ratings

Note: the table below is derived from the original Bushland Condition Monitoring Weed Threat Ratings, but designed to meet the needs of BAM.

NSXCODE is used by DEW for data entry into the BDBSA. Taxonomy updated July 2024.

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
Z02071	Abutilon theophrasti	Swamp Lantern-bush	MALVACEAE	1	1	1	1	1	1	-
C01541	Acacia baileyana	Cootamundra Wattle	FABACEAE	1	1	-	-	2	1	2
Q01556	Acacia cyclops	Western Coastal Wattle	FABACEAE	3	2	-	-	3	3	3
W01559	Acacia decurrens	Early Black Wattle	FABACEAE	-	-	-	-	2	1	-
S01581	Acacia longifolia ssp. longifolia	Sallow Wattle	FABACEAE	2	3	-	3	3	3	2
K03753	Acacia longifolia ssp. sophorae	Coastal Wattle	FABACEAE	?	?	?	?	?	?	Native
W01583	Acacia mearnsii	Black Wattle	FABACEAE	2	3	-	2	3	3	-
Y01616	Acacia saligna	Golden Wreath Wattle	FABACEAE	3	3	3	3	2	2	2
K04993	Rumex acetosella	Sorrel	POLYGONACEAE	1	1	1	1	1	1	1
W04911	Aeonium arboreum	Aeonium	CRASSULACEAE	1	1	-	1	2	2	2
Y05784	Agave americana	Century Plant	ASPARAGACEAE	2	2	2	2	2	3	-
M00294	Agrostis gigantea	Red-top Bent	POACEAE	2	-	-	-	2	2	-
C00125	Ailanthus altissima	Tree Of Heaven	SIMAROUBACEAE	1	-	-	-	2	2	-
E10026	Aira sp.	Hair-grass	POACEAE	1	1	1	1	1	1	1
C00645	Allium ampeloprasum	Wild Leek	AMARYLLIDACEAE	1	1	-	1	2	2	-
W00651	Allium triquetrum	Three-cornered Garlic	AMARYLLIDACEAE	1	1	-	1	3	2	2
A00652	Allium vineale	Crow Garlic	AMARYLLIDACEAE	-	1	-	-	2	2	2
C00653	Aloe arborescens		ASPHODELACEAE	1	1	-	-	1	1	-
E01390	Alyssum linifolium	Flax-leaf Alyssum	BRASSICACEAE	1	1	1	-	1	1	-
A00300	Ammophila arenaria	Marram Grass	POACEAE	3	3	3	3	3	4	3
K10053	Amsinckia sp.	Fiddle-neck	BORAGINACEAE	1	1	2	2	2	2	2
M02442	Lysimachia arvensis	Pimpernel	PRIMULACEAE	1	1	1	1	1	1	1
Q02444	Lysimachia minima	Chaffweed	PRIMULACEAE	1	-	-	1	1	1	-
G00275	Anthoxanthum odoratum	Sweet Vernal Grass	POACEAE	2		2	2	3	2	2
G02351	Apium graveolens	Celery	APIACEAE	1	1	2	2	2	2	-
Y32740	Mesembryanthemum cordifolium	Heart-leaf Iceplant	AIZOACEAE	1	1	-	-	2	2	-

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
W02403	Arbutus unedo	Strawberry Tree	ERICACEAE	-	-	-	-	1	1	-
K02953	Arctotheca calendula	Cape Weed	ASTERACEAE	2	2	2	2	2	2	1
Z03967	Arctotheca populifolia	Beach Daisy	ASTERACEAE	3	3	-	3	3	4	-
M02954	Arctotis stoechadifolia	White Arctotis	ASTERACEAE	3	3	2	2	3	3	3
C05393	Arenaria leptoclados	Lesser Thyme-leaved Sandwort	CARYOPHYLLACEAE	1	1	1	1	1	1	1
A20020	Argyranthemum frutescens ssp.	Marguerite Daisy	ASTERACEAE	2	3	2	-	3	3	2
U00158	Arundo donax	Giant Reed	POACEAE	1	=	=	=	2	2	2
E32026	Asparagus asparagoides f.	Bridal Creeper	ASPARAGACEAE	5	5	5	5	5	5	5
U30122	Asparagus asparagoides f. asparagoides	Bridal Creeper	ASPARAGACEAE	5	5	5	5	5	5	5
W30123	Asparagus asparagoides f. Western Cape (R.Taplin 1133)	Bridal Creeper	ASPARAGACEAE	5	5	5	5	5	5	5
E04578	Asparagus declinatus		ASPARAGACEAE	5	5	5	5	5	5	5
Q05208	Asparagus aethiopicus	Asparagus Fern	ASPARAGACEAE	-	-	-	-	5	5	5
K00665	Asparagus officinalis	Asparagus	ASPARAGACEAE	3	3	4	3	4	4	-
S10681	Asparagus sp.	Asparagus sp.	ASPARAGACEAE	5	5	5	5	5	5	5
M00666	Asphodelus fistulosus	Onion Weed	ASPHODELACEAE	2	2	2	2	2	2	2
Z02955	Symphyotrichum subulatum	Aster-weed	ASTERACEAE	2	2	2	2	2	2	2
G03267	Asteriscus spinosus	Golden Pallensis	ASTERACEAE	2	2	2	2	2	2	2
A03688	Atriplex prostrata	Creeping Saltbush	AMARANTHACEAE	2	2	2	2	2	2	2
K00277	Avellinia festucoides	Avellinia	POACEAE	1	1	1	1	1	1	1
E10106	Avena sp.	Oat	POACEAE	2	2	2	2	2	2	2
K03913	Avena barbata	Oat	POACEAE	2	2	2	2	2	2	2
Y15316	Avena barbata/fatua	Oat	POACEAE	2	2	2	2	2	2	2
Y00128	Avena fatua	Oat	POACEAE	2	2	2	2	2	2	2
Z00279	Avena sativa	Oat	POACEAE	2	2	2	2	2	2	2
E00726	Babiana stricta	Baboon-flower	IRIDACEAE	-	-	-	-	3	3	3
A02704	Bellardia trixago	Bellardia	OROBANCHACEAE	1	1	1	1	1	1	-
E02730	Bellardia latifolia	Red Bartsia	OROBANCHACEAE	1	1	1	1	1	1	-
Y01324	Ranunculus trichophyllus	Water Buttercup	RANUNCULACEAE	1	1	-	-	1	1	1
Y04596	Berula erecta	Water Parsnip	APIACEAE	2	-	2	2	2	2	-

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
Q01272	Beta vulgaris ssp. maritima	Sea Beet	AMARANTHACEAE	1	-	-	-	1	1	1
M01510	Billardiera heterophylla	Blue-bell Creeper	PITTOSPORACEAE	-	2	-	2	3	3	3
E00206	Brachypodium distachyon	False Brome	POACEAE	2	2	2	2	2	2	2
W10147	Brassica sp.	Turnip sp.	BRASSICACEAE	2	2	2	2	2	2	2
W10147	Brassica sp.	Turnip sp.	BRASSICACEAE	2	2	2	2	2	2	2
Y00224	Briza maxima	Large Quaking-grass	POACEAE	2	2	2	2	2	2	2
K00225	Briza minor	Lesser Quaking-grass	POACEAE	2	2	2	2	2	2	2
G01403	Brassica tournefortii	Wild Turnip	BRASSICACEAE	2	2	2	2	2	2	2
U00210	Bromus catharticus	Prairie Grass	POACEAE	1	1	1	1	1	1	1
A32536	Bromus diandrus	Great Brome	POACEAE	1	1	1	1	1	1	1
A04356	Bromus hordeaceus ssp. hordeaceus	Soft Brome	POACEAE	1	1	1	1	1	1	1
Y00208	Bromus madritensis	Compact Brome	POACEAE	1	1	1	1	1	1	1
K00209	Bromus rubens	Red Brome	POACEAE	1	1	1	1	1	1	1
C10149	Bromus sp.	Brome	POACEAE	2	2	2	1	1	1	1
Q02540	Buglossoides arvensis	Sheepweed	BORAGINACEAE	1	1	1	1	1	1	1
M02354	Bupleurum semicompositum	Hare's Ear	APIACEAE	1	1	1	1	1	1	1
K01405	Cakile maritima ssp. maritima	Two-horned Sea Rocket	BRASSICACEAE	1	1	1	1	1	2	1
W02587	Callitriche stagnalis	Common Water Starwort	PLANTAGINACEAE	1	11	2	1	1	1	-
Z01407	Capsella bursa-pastoris	Shepherd's Purse	BRASSICACEAE	1	1	1	1	1	1	1
	Cardamine hirsuta	Hairy bitter-cress	BRASSICACEAE	1	1	-	1	1	1	1
K10185	Carduus sp.	Thistle	ASTERACEAE	2	2	2	2	2	2	2
E03010	Carduus tenuiflorus	Slender Thistle	ASTERACEAE	2	2	2	2	2	2	2
U00466	Carex divisa	Divided Sedge	CYPERACEAE	2	-	2	-	2	1	-
E01014	Carpobrotus chilensis	Angled Pigface	AIZOACEAE	2	2	1	-	2	2	-
G01015	Carpobrotus edulis ssp. edulis	Hottentot Fig	AIZOACEAE	2	2	2	-	2	3	2
Y01412	Carrichtera annua	Ward's Weed	BRASSICACEAE	2	2	2	-	2	2	-
Y03012	Carthamus lanatus	Saffron Thistle	ASTERACEAE	2	2	2	2	2	2	1
G03011	Carthamus leucocaulos	Glaucous Star-thistle	ASTERACEAE	-	-	-	1	-	-	1
Q03472	Casuarina glauca	Grey Buloak	CASUARINACEAE	2	2	2	2	2	2	-
M00226	Catapodium rigidum	Rigid Fescue	POACEAE	1	1	1	1	2	2	1
C05369	Cenchrus ciliaris	Buffel Grass	POACEAE	3	3	2	-	2	2	-

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
W00387	W00387	POACEAE	Cenchrus spinifex	-	2	2	-	-	-	-
A00388	Cenchrus longispinus	Spiny Burr-grass	POACEAE	2	-	2	-	-	-	-
Y03020	Centaurea calcitrapa	Star Thistle	ASTERACEAE	2	2	2	2	2	2	-
K03021	Centaurea melitensis	Malta Thistle	ASTERACEAE	2	2	2	2	2	2	2
E02466	Centaurium erythraea	Common Centaury	GENTIANACEAE	1	1	1	1	1	1	1
C10201	Centaurium sp.	Centaury	GENTIANACEAE	1	1	1	1	1	1	1
Q05912	Centaurium tenuiflorum	Branched Centaury	GENTIANACEAE	1	1	1	1	1	1	1
C01065	Cerastium balearicum	Chickweed	CARYOPHYLLACEAE	1	1	1	1	1	1	1
G01067	Cerastium glomeratum	Common Mouse-ear Chickweed	CARYOPHYLLACEAE	1	1	1	1	1	1	1
Z10207	Cerastium sp.	Chickweed	CARYOPHYLLACEAE	1	1	1	1	1	1	1
E01658	Chamaecytisus palmensis	Tree Lucerne	FABACEAE	3	2	2	3	3	3	3
W32471	Chasmanthe floribunda	African Corn-flag	IRIDACEAE	3	2	1	2	3	2	3
A01160	Chenopodium album	Fat Hen	AMARANTHACEAE	1	1	1	1	1	1	1
Z01175	Chenopodium glaucum	Glaucous Goosefoot	AMARANTHACEAE	1	1	1	1	1	1	1
S01169	Chenopodium murale	Nettle-leaf Goosefoot	AMARANTHACEAE	1	1	1	1	1	1	1
S10217	Chenopodium sp.	Goosefoot	AMARANTHACEAE	1	1	1	1	1	1	1
Y00364	Chloris gayana	Rhodes Grass	POACEAE	3	3	3	3	3	3	-
Q03032	Chondrilla juncea	Skeleton Weed	ASTERACEAE	2	2	3	2	2	2	-
S03033	Chrysanthemoides monilifera ssp. monilifera	Boneseed	ASTERACEAE	4	4	4	4	4	3	-
S03041	Cirsium vulgare	Spear Thistle	ASTERACEAE	2	2	2	2	2	2	2
M02186	Citrullus amarus	Bitter Melon	CUCURBITACEAE	1	1	1	1	1	1	-
K02185	Citrullus colocynthis	Colocynth	CUCURBITACEAE	1	1	1	1	1	1	-
C10237	Citrullus sp.	Wild Melon	CUCURBITACEAE	1	1	1	1	1	1	-
M03922	Coleonema pulchellum	Diosma	RUTACEAE	2	2	-	-	2	2	2
S02357	Conium maculatum	Hemlock	APIACEAE	2	2	2	2	2	2	2
K02521	Convolvulus arvensis	Field Bindweed	CONVOLVULACEAE	1	1	1	1	1	1	1
K10257	Erigeron sp.	Fleabane	ASTERACEAE	1	1	2	1	2	2	-
W03043	Erigeron bonariensis	Flax-leaf Fleabane	ASTERACEAE	1	1	2	1	2	2	-
G04703	Erigeron canadensis	Canadian Fleabane	ASTERACEAE	1	1	2	1	2	2	-
S02497	Coprosma repens	New Zealand Mirror-bush	RUBIACEAE	2	2	2	2	3	3	3

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
M10266	Cotoneaster sp.	Cotoneaster	ROSACEAE	2	2	-	2	2	2	2
S20045	Cotyledon orbiculata var.	Cotyledon	CRASSULACEAE	1	1	1	-	1	1	1
A03132	Crassula alata var. alata	Three-part Crassula	CRASSULACEAE	1	-	1	1	1	1	1
A01488	Crassula natans var. minor	Water Crassula	CRASSULACEAE	1	1	1	1	1	1	1
G10271	Crataegus sp.	Hawthorn	ROSACEAE	2	-	-	-	3	-	-
S01521	Crataegus monogyna	Hawthorn	ROSACEAE	2	-	-	-	3	-	-
K10273	Crepis sp.	Hawksbeard	ASTERACEAE	1	1	1	1	1	1	1-
Y03056	Crepis capillaris	Smooth Hawksbeard	ASTERACEAE	1	1	1	1	1	1	1-
M01386	Cuscuta campestris	Golden Dodder	CONVOLVULACEAE	-	-	3	2	2	2	-
E03062	Cynara cardunculus ssp. flavescens	Artichoke Thistle	ASTERACEAE	3	2	2	2	2	2	-
W32595	Cynodon dactylon var.	Couch	POACEAE	2	2	2	2	2	2	2
Z10291	Cynodon sp.	Couch	POACEAE	2	2	2	2	2	2	2
U06326	Cynodon dactylon var. dactylon	Couch	POACEAE	2	2	2	2	2	2	2
Z00227	Cynosurus echinatus	Rough Dog's-tail Grass	POACEAE	2	-	2	2	2	2	2
Q00500	Isolepis levynsiana	Tiny Flat-sedge	CYPERACEAE	1	1	-	1	2	2	2
G01659	Cytisus scoparius	English Broom	FABACEAE	3	-	-	-	4	3	-
S00229	Dactylis glomerata	Cocksfoot	POACEAE	2	1	2	2	3	2	2
S10305	Datura sp.	Thorn-apple	SOLANACEAE	1	1	1	1	1	1	1
Z03315	Delairea odorata	Cape Ivy	ASTERACEAE	-	-	-	-	4	3	-
S01417	Diplotaxis muralis	Wall Rocket	BRASSICACEAE	2	2	2	2	2	2	2
U01418	Diplotaxis tenuifolia	Lincoln Weed	BRASSICACEAE	2	2	2	2	2	2	2
A03864	Dipogon lignosus	Lavatory Creeper	FABACEAE	3	3	-	3	2	4	3
Z04395	Disa bracteata	South African Weed Orchid	ORCHIDACEAE	3	-	3	3	4	3	3
U03694	Dischisma arenarium	Sand Dichisma	SCROPHULARIACEAE	1	-	-	-	-	-	-
M03198	Dittrichia graveolens	Stinkweed	ASTERACEAE	1	2	2	1	2	2	1
G00399	Echinochloa crus-galli	Common Barnyard Grass	POACEAE	1	1	2	1	2	2	1
E02546	Echium plantagineum	Salvation Jane	BORAGINACEAE	2	2	2	2	2	2	2
C00117	Ehrharta calycina	Perennial Veldt Grass	POACEAE	3	4	4	4	4	4	4
G00119	Ehrharta longiflora	Annual Veldt Grass	POACEAE	2	2	2	2	2	2	2
Q00120	Ehrharta villosa	Pyp Grass	POACEAE	3	3	3	3	3	4	-
Y00972	Rumex hypogaeus	Three-corner Jack	POLYGONACEAE	1	1	1	1	1	1	1

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
Z10363	Emex sp.	Three-corner Jack	POLYGONACEAE	1	1	1	1	1	1	1
C00345	Eragrostis curvula	African Love-grass	POACEAE	2	2	2	2	2	2	-
C10377	Erica sp.	Heath	ERICACEAE				3	4	3	
K03981	Erica arborea	Tree Heath	ERICACEAE				3	4	3	
Y03664	Erica baccans	Berry-flower Heath	ERICACEAE				3	4	3	
A02404	Erica lusitanica	Spanish Heath	ERICACEAE				3	4	3	
E10386	Erodium sp.	Heron's-bill/Crowfoot	GERANIACEAE	2	2	2	2	2	2	2
S01865	Erodium aureum		GERANIACEAE	*	2	2	2	2	2	2
U01866	Erodium botrys	Long Heron's-bill	GERANIACEAE	*	2	2	2	2	2	2
Z01871	Erodium moschatum	Musky Herons-bill	GERANIACEAE	2	2	2	2	2	2	2
S01929	Euphorbia paralias	Sea Spurge	EUPHORBIACEAE	3	3	3	3	3	3	3
G01931	Euphorbia peplus	Petty Spurge	EUPHORBIACEAE	2	2	2	2	2	2	2
Z01935	Euphorbia terracina	False Caper	EUPHORBIACEAE	3	3	3	3	3	3	3
Z02947	Euryops abrotanifolius	Euryops	ASTERACEAE	-	-	-	-	3	3	-
U00730	Ferraria crispa ssp. crispa	Black Flag	IRIDACEAE	1	1	1	1	2	1	2
G00231	Lolium arundinaceum	Tall Meadow Ryegrass	POACEAE	1	1	1	2	1	1	-
M00234	Lolium pratense	Meadow Ryegrass	POACEAE			1	2	1	1	-
Q00888	Ficus carica	Edible Fig	MORACEAE	-	-	-	-	2	2	-
U02366	Foeniculum vulgare	Fennel	APIACEAE	2	2	2	2	2	2	2
Q04108	Fraxinus angustifolia ssp. angustifolia	Desert Ash	OLEACEAE	3		2		3	3	-
E04314	Freesia leichtlinii	Freesia	IRIDACEAE	3	3	3	3	3	3	3
K10417	Fumaria sp.	Fumitory	PAPAVERACEAE	1	1	1	1	1	1	1
E01366	Fumaria bastardii	Bastard Fumitory	PAPAVERACEAE	1	1	1	1	1	1	1
G01367	Fumaria capreolata	White-flower Fumitory	PAPAVERACEAE	1	1	1	1	1	1	1
A01020	Aizoon pubescens	Coastal Galenia	AIZOACEAE	2	2	-	-	2	2	-
C01021	Aizoon secundum	Galenia	AIZOACEAE	2	2	2	-	2	2	-
C10421	Aizoon sp.	Galenia	AIZOACEAE	2	2	2	-	2	2	-
W02499	Galium aparine	Cleavers	RUBIACEAE	1			1		2	-
E02502	Galium divaricatum	Slender Bedstraw	RUBIACEAE	1	1	1	1	1	1	1
Y02504	Galium murale	Small Bedstraw	RUBIACEAE	1	1	1	1	1	1	1
Z02507	Galium tricornutum	Three-horned Bedstraw	RUBIACEAE	1	-	-	-	1	1	1

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
E00310	Gastridium phleoides	Nit-grass	POACEAE	1	1	1	1	1	1	1
U04434	Gazania linearis	Gazania	ASTERACEAE	3	3	3	3	3	3	3
M04202	Gazania rigens	Gazania	ASTERACEAE	3	-	-	3	3	3	-
Q10428	Gazania sp.	Gazania	ASTERACEAE	3	3	3	3	3	3	3
G03435	Genista monspessulana	Montpellier Broom	FABACEAE	3	3	3	3	4	3	3
S01873	Geranium dissectum	Cut-leaf Geranium	GERANIACEAE	1	1	1	1	1	1	-
U01874	Geranium molle	Soft Geranium	GERANIACEAE	1	1	1	1	1	1	1
S10437	Gladiolus sp.	Gladiolus	IRIDACEAE	2	2	2	2	3	3	3
G00735	Gladiolus undulatus	Wild Gladiolus	IRIDACEAE	2	2	2	2	3	3	3
K01685	Glycyrrhiza glabra	Liquorice	FABACEAE	1	-	1	1	1	1	-
M02486	Gomphocarpus cancellatus	Broad-leaf Cotton-bush	APOCYNACEAE	2	2	2		2	2	2
S00317	Hainardia cylindrica	Common Barb-grass	POACEAE				1			1
S00909	Hakea laurina	Pincushion Hakea	PROTEACEAE	1	-	1	-	2	1	2
U32770	Hedera helix	English Ivy	ARALIACEAE					4	4	-
E32458	Leontodon rhagadioloides	Cretan Weed	ASTERACEAE	1	1	1	1	2	2	1
A02552	Heliotropium curassavicum	Smooth Heliotrope	BORAGINACEAE	1	1	2	1	1	1	1
C02553	Heliotropium europaeum	Common Heliotrope	BORAGINACEAE	1	1	1	1	1	1	-
Y02556	Heliotropium supinum	Creeping Heliotrope	BORAGINACEAE	1	1	1	-	1	1	-
U03270	Helminthotheca echioides	Ox-tongue	ASTERACEAE	1	1	1	1	1	1	-
U01426	Hirschfeldia incana	Hoary Mustard	BRASSICACEAE	1	1	1	1	1	1	1
C00281	Holcus lanatus	Yorkshire Fog	POACEAE	2	2	2	2	2	2	2
Q10496	Hordeum sp.	Barley-grasses	POACEAE	1	1	1	1	1	1	1
W01427	Hornungia procumbens	Oval Purse	BRASSICACEAE	1	1	1	1	1	1	1
G00451	Hyparrhenia hirta	Tambookie Grass	POACEAE	3	-	3	3	3	3	-
U01354	Hypericum perforatum ssp. veronense	St John's Wort	HYPERICACEAE	2	2	2	2	3	3	-
Y03196	Hypochaeris glabra	Smooth Cat's Ear	ASTERACEAE	1	1	1	1	1	1	2
K03197	Hypochaeris radicata	Rough Cat's Ear	ASTERACEAE	2	2	2	2	2	2	2
U03642	Ipomoea indica	Purple Morning-glory	CONVOLVULACEAE	1	-	2	1	2	2	-
U06026	Iris germanica	Flag Iris	IRIDACEAE	2	-	2	-	3	2	-
Y10520	Iris sp.	Iris	IRIDACEAE	2	2	2	2	3	2	2
C00573	Isolepis marginata	Little Club-rush	CYPERACEAE	1	1	1	1	2	2	2

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
M10530	Ixia sp.	Ixia	IRIDACEAE	3	3	3	-	3	3	-
Q00616	Juncus acutus	Sharp Rush	JUNCACEAE	3	4	4	3	3	3	-
W00619	Juncus articulatus	Jointed Rush	JUNCACEAE	2	2	2	2	3	2	2
Q00624	Juncus capitatus	Dwarf Rush	JUNCACEAE	2	2	2	2	2	2	2
U00626	Juncus effusus	Soft Rush	JUNCACEAE	1	-	-	-	2	2	2
U03730	Kickxia elatine ssp. crinita	Twining Toadflax	PLANTAGINACEAE	1	1	1	1	1	1	1
K32037	Lactuca serriola f.	Prickly Lettuce	ASTERACEAE	2	2	2	2	2	2	2
Z03675	Lagunaria patersonii	Pyramid Tree	MALVACEAE	2	2	-	-	2	1	2
G00311	Lagurus ovatus	Hare's Tail Grass	POACEAE	2	2	2	2	2	2	2
S00237	Lamarckia aurea	Toothbrush Grass	POACEAE	1	1	1	1	1	1	-
Y01704	Lathyrus latifolius	Perennial Pea	FABACEAE	1	-	-	1	2	2	-
C03581	Lathyrus tingitanus	Tangier Pea	FABACEAE	1	-	-	1	2	2	-
E02598	Lavandula stoechas ssp. stoechas	Topped Lavender	LAMIACEAE	4	-	2	-	4	2	-
A04760	Leontodon saxatilis	Lesser Hawkbit	ASTERACEAE	1	1	1	1	1	1	1
S03393	Lepidium africanum	Common Peppercress	BRASSICACEAE	1	1	1	1	1	1	1
K10565	Lepidium sp.	Peppercress	BRASSICACEAE	1	1	1	1	1	1	1
W02279	Leptospermum laevigatum	Coast Tea-tree	MYRTACEAE	3	3	-	3	3	4	3
Q10584	Limonium sp.	Sea-lavenders	PLUMBAGINACEAE	2	2	2	2	2	2	2
K01909	Linum strictum ssp. strictum	Upright Yellow Flax	LINACEAE	1	1	1	1	1	1	1
U01910	Linum trigynum	French Flax	LINACEAE	1	1	1	1	1	1	1
S04433	Logfia gallica	Narrow Cudweed	ASTERACEAE	1	1	1	1	1	1	-
W10595	Lolium sp.	Ryegrass	POACEAE	2	2	2	2	1	1	1
G10599	Lotus sp.	Lotus	FABACEAE	1	1	1	1	1	1	-
G01711	Lotus subbiflorus	Hairy Bird's-foot Trefoil	FABACEAE	-	-	-	-	1	1	-
Z06243	Lotus uliginosus	Greater Bird's-foot Trefoil	FABACEAE	-	-	-	-	2	2	-
G02319	Ludwigia peploides ssp. montevidensis	Water Primrose	ONAGRACEAE	-	-	3	-	1	-	-
Y01712	Lupinus cosentinii	Blue Lupin	FABACEAE				1	2	2	-
M02662	Lycium ferocissimum	African Boxthorn	SOLANACEAE	4	4	4	3	3	3	3
W02091	Malva parviflora	Small-flower Marshmallow	MALVACEAE	1	1	1	1	1	1	1
Y02600	Marrubium vulgare	Horehound	LAMIACEAE	3	3	3	2	2	3	2
C01445	Matthiola incana	Common Stock	BRASSICACEAE	2	2	-	-	-	-	2

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
C10625	Medicago sp.	Medic	FABACEAE	2	2	2	2	2	2	2
A04540	Melaleuca armillaris ssp. armillaris	Bracelet Honey-myrtle	MYRTACEAE	1	-	1	-	2	1	2
S02021	Melianthus comosus	Tufted Honey-flower	FRANCOACEAE	1	-	-	-	3	2	-
U02022	Melianthus major	Cape Honey-flower	FRANCOACEAE	2	-	-	-	3	2	-
C01729	Melilotus indicus	King Island Melilot	FABACEAE	2	2	2	2	2	2	2
E10634	Mentha sp.	Mint	LAMIACEAE	1	1	1	1	2	2	2
S02605	Mentha pulegium	Pennyroyal	LAMIACEAE	1	1	2	1	2	1	2
U20118	Mentha spicata	Spearmint	LAMIACEAE	1	-	1	1	2	2	-
E04878	Mentha X piperita var. citrata	Lemon Mint	LAMIACEAE	1	-	1	1	2	2	-
G01023	Mesembryanthemum crystallinum	Common Iceplant	AIZOACEAE	2	2	2	2	2	2	2
Y01024	Mesembryanthemum nodiflorum	Slender Iceplant	AIZOACEAE	2	2	2	2	2	2	-
C01073	Sabulina mediterranea	Slender Sandwort	CARYOPHYLLACEAE	1	1	1	1	1	1	1
E01074	Moenchia erecta	Erect Chickweed	CARYOPHYLLACEAE	1	1	1	1	1	1	1
E03266	Monoculus monstrosus	Tripteris	ASTERACEAE	1	1	-	-	1	1	-
K00737	Moraea flaccida	One-leaf Cape Tulip	IRIDACEAE	3	3	3	3	3	3	3
M00738	Moraea miniata	Two-leaf Cape Tulip	IRIDACEAE	3	3	3	3	3	3	-
Y00736	Moraea setifolia	Thread Iris	IRIDACEAE	2	2	2	2	2	2	2
Y02000	Muraltia heisteria	African Furze	POLYGALACEAE	-	-	1	-	3	1	-
E03514	Myosotis discolor	Changing Forget-me-not	BORAGINACEAE	1	-	1	1	1	1	-
U00722	Narcissus tazetta	Polyanthus Narcissus	AMARYLLIDACEAE	2	2	-	-	3	2	2
W05771	Nassella leucotricha	Texas Needle Grass	POACEAE	-	-	-	-	3	2	-
U05770	Nassella neesiana	Chilean Needle Grass	POACEAE	-	-	3	-	3	2	-
E02562	Neatostema apulum	Hairy Sheepweed	BORAGINACEAE	1	1	1	1	1	1	-
Q02664	Nicotiana glauca	Tree Tobacco	SOLANACEAE	2	2	2	2	2	2	2
E00822	Oenothera stricta ssp. stricta	Common Evening Primrose	ONAGRACEAE	2	2	2	2	2	2	2
S20125	Olea europaea ssp.	Olive	OLEACEAE	3	4	3	3	4	4	4
A04444	Oncosiphon suffruticosum	Calomba Daisy	ASTERACEAE	3	3	3	-	3	3	-
Q04952	Onopordum acanthium	Scotch Thistle	ASTERACEAE	2	2	2	2	2	2	-
A03264	Onopordum acaulon	Horse Thistle	ASTERACEAE	2	2	3	2	2		2
C06417	Opuntia sp.		CACTACEAE	2	2	2	-	2	-	-

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
Y05036	Orobanche minor	Lesser Broomrape	OROBANCHACEAE	-	-	3	-	2	-	-
M04158	Orobanche ramosa ssp. mutelii	Branched Broomrape	OROBANCHACEAE	-	-	3	-	2	-	-
M10718	Orobanche sp.	Broomrape	OROBANCHACEAE	-	-	3	-	2	-	-
Z01855	Oxalis corniculata	Creeping Wood-sorrel	OXALIDACEAE	2	2	2	-	2	2	2
M01862	Oxalis pes-caprae	Soursob	OXALIDACEAE	3	3	3	3	4	4	3
Z01863	Oxalis purpurea	One-o'clock	OXALIDACEAE	2	2	2	2	2	2	2
K10733	Papaver sp.	Рорру	PAPAVERACEAE	1	1	1	1	1	1	1
U00318	Parapholis incurva	Curly Ryegrass	POACEAE	2	2	2	2	1	2	2
Y10740	Parentucellia sp.	Bartsia	SCROPHULARIACEAE	1	1	1	1	1	1	1
C00417	Paspalum dilatatum	Paspalum	POACEAE	3	3	3	3	3	3	3
U00182	Paspalum distichum	Water Couch	POACEAE	3	3	3	3	3	3	3
E00418	Paspalum vaginatum	Salt-water Couch	POACEAE	3	3	3	3	3	3	3
S00421	Cenchrus clandestinus	Kikuyu	POACEAE	3	3	3	3	3	3	3
U00422	Cenchrus macrourus	African Feather-grass	POACEAE	3	3	3	3	3	3	-
C03709	Cenchrus setaceus	Fountain Grass	POACEAE	3	4	4	4	4	4	4
W00423	Cenchrus longisetus	Feather-top	POACEAE	3	3	3	3	3	3	3
C00185	Pentameris airoides ssp. airoides	False Hair-grass	POACEAE	1	1	1	2	1	1	-
E00186	Pentameris pallida	Pussy Tail	POACEAE	3	3	3	3	3	3	-
Q10760	Petrorhagia sp.	Pink	CARYOPHYLLACEAE	1	1	1	1	1	1	1
Z01079	Petrorhagia dubia	Velvet Pink	CARYOPHYLLACEAE	1	1	1	1	1	1	1
W10763	Phalaris sp.	Canary Grass	POACEAE	3	3	3	3	3	3	3
K00285	Phalaris aquatica	Phalaris	POACEAE	3	3	3	3	3	3	3
M00286	Phalaris canariensis	Canary Grass	POACEAE	3	3	3	3	3	3	3
E02570	Phyla canescens	Lippia	VERBENACEAE	2	2	3	2	2	2	-
K02733	Phyllopodium cordatum		SCROPHULARIACEAE	-	1	1	-	1	1	-
Z03375	Pinus halepensis	Aleppo Pine	PINACEAE	3	3	3		2	3	3
W03379	Pinus radiata	Radiata Pine	PINACEAE	3	3	2		3	3	3
W00123	Piptatherum miliaceum	Rice Millet	POACEAE	2	2	2	2	2	2	2
C01509	Pittosporum undulatum	Sweet Pittosporum	PITTOSPORACEAE	2	2	-	-	3	3	3
G02811	Plantago bellardii	Hairy Plantain	PLANTAGINACEAE	1	1	2	1	1	2	-
E20138	Plantago coronopus ssp.	Bucks-horn Plantain	PLANTAGINACEAE	2	2	2	2	2	2	2

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
A20284	Plantago lanceolata var.	Ribwort	PLANTAGINACEAE	2	2	2	2	2	2	2
M10786	Plantago sp.	Plantain	PLANTAGINACEAE	2	2	2	2	2	2	2
Z05971	Poa annua	Winter Grass	POACEAE	2	2	2	2	2	2	2
Q00244	Poa bulbosa	Bulbous Meadow-grass	POACEAE	2	2	2	2	2	2	2
W00255	Poa pratensis	Kentucky Blue-grass	POACEAE			2	2	2	2	2
Q10796	Poa sp.	Meadow-grass/Tussock- grass	POACEAE	2	2	2	2	2	2	2
E10802	Polycarena rariflora		SCROPHULARIACEAE	-	-	-	-	1	1	-
E01082	Polycarpon tetraphyllum	Four-leaf Allseed	CARYOPHYLLACEAE	1	1	1	1	1	1	1
M02002	Polygala monspeliaca	Annual Milkwort	POLYGALACEAE	-	-	-	1	-	-	-
Z02003	Polygala myrtifolia	Myrtle-leaf Milkwort	POLYGALACEAE	3	4	-	4	4	4	4
M06066	Polygonum aviculare	Wireweed	POLYGONACEAE	1	2	2	1	1	1	2
M00314	Polypogon maritimus	Coast Beard-grass	POACEAE	1	1	1	1	1	2	1
Z00315	Polypogon monspeliensis	Annual Beard-grass	POACEAE	1	1	1	1	1	2	2
Q00316	Polypogon viridis	Water Bent	POACEAE	1	1	1	1	1	1	1
M03154	Populus alba	White Poplar	SALICACEAE	1	-	2	1	1	1	1
G10811	Populus sp.	Poplar	SALICACEAE	1	=	2	1	1	1	2
Q03392	Mesembryanthemum granulicaule	Match-head Plant	AIZOACEAE	1	1	2	-	-	-	-
C32165	Puccinellia ciliata	Australian Saltmarsh-grass	POACEAE	1	1	1	1	1	1	1
G00259	Puccinellia distans	Reflexed Poa	POACEAE	1	-	2	1	1	1	-
Q00260	Puccinellia fasciculata	Borrer's Saltmarsh-grass	POACEAE	1	1	2	2	1	1	-
Q01336	Ranunculus repens	Creeping Buttercup	RANUNCULACEAE	1	1	2	1	2	1	-
G01463	Raphanus raphanistrum	Wild Radish	BRASSICACEAE	1	1	1	1	1	1	1
K01465	Rapistrum rugosum ssp. rugosum	Turnip Weed	BRASSICACEAE	2	2	2	1	2	2	-
Y03292	Reichardia tingitana	False Sowthistle	ASTERACEAE	2	2	2	2	2	2	2
M01482	Reseda lutea	Cut-leaf Mignonette	RESEDACEAE	2	2	2	2	2	2	-
Z01483	Reseda luteola	Wild Mignonette	RESEDACEAE	2	2	2	2	2	2	-
G10847	Reseda sp.	Mignonette	RESEDACEAE	2	2	2	2	2	2	-
A03652	Retama raetam	White Weeping Broom	FABACEAE	2	2	2	2	2	2	-
M02046	Rhamnus alaternus	Blowfly Bush	RHAMNACEAE	3	3	3	3	3	3	3
S01953	Ricinus communis	Castor Oil Plant	EUPHORBIACEAE	2	2	2	2	2	2	2

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
M00754	Romulea minutiflora	Small-flower Onion-grass	IRIDACEAE	2	2	2	2	2	2	2
Z00755	Romulea rosea var. australis	Common Onion-grass	IRIDACEAE	2	2	2	2	2	2	2
U10666	Romulea sp.	Onion-grass sp.	IRIDACEAE	2	2	2	2	2	2	2
Z03499	Rorippa nasturtium-aquaticum	Watercress	BRASSICACEAE	2	2	2	2	2	2	-
E01526	Rosa canina	Dog Rose	ROSACEAE	3	3	3	3	3	3	-
Y01528	Rosa rubiginosa	Sweet Briar	ROSACEAE	3	3	3	3	3	3	3
E00282	Rostraria cristata	Annual Cat's-tail	POACEAE	1	1	1	1	1	1	1
Y00284	Rostraria pumila	Tiny Bristle-grass	POACEAE	1	1	1	1	1	1	-
G10863	Rubus sp.	Blackberry	ROSACEAE	4	4	3	3	5	5	4
C32393	Rubus fruticosus aggregate	Blackberry	ROSACEAE	4	4	3	3	5	5	4
U00994	Rumex conglomeratus	Clustered Dock	POLYGONACEAE	2	2	2	2	1	1	
W00995	Rumex crispus	Curled Dock	POLYGONACEAE	2	2	2	2	1	1	2
K10865	Rumex sp.	Dock	POLYGONACEAE	2	2	2	2	2	2	2
G01083	Sagina apetala	Annual Pearlwort	CARYOPHYLLACEAE	1	1	1	1	1	1	1
K01085	Sagina maritima	Sea Pearlwort	CARYOPHYLLACEAE	1	1	1	1	2	2	-
Y10872	Salix sp.	Willow	SALICACEAE	3	3	4	3	4	4	-
M20166	Salvia verbenaca var.	Wild Sage	LAMIACEAE	2	2	2	2	2	2	2
S02833	Sixalix atropurpurea	Pincushion	CAPRIFOLIACEAE	3	2	2	2	3	2	2
G03875	Schinus molle	Pepper-tree	ANACARDIACEAE	2	2	2	2	2	2	2
K00189	Schismus barbatus	Arabian Grass	POACEAE	1	1	1	1	1	1	1
Q03536	Senecio angulatus	Cape Ivy	ASTERACEAE	-	-	-		4	3	3
C03301	Senecio elegans	Purple Groundsel	ASTERACEAE	-	-	1	2	1	1	-
Y03320	Senecio pterophorus	African Daisy	ASTERACEAE	3	3	3	3	3	3	3
Q03324	Senecio vulgaris	Common Groundsel	ASTERACEAE	1	-	-	1	1	1	1
Q02516	Sherardia arvensis	Field Madder	RUBIACEAE	1	1	1	1	1	1	1
U10914	Silene sp.	Catchfly	CARYOPHYLLACEAE	1	1	1	1	1	1	1
G01091	Silene apetala	Sand Catchfly	CARYOPHYLLACEAE	1	1	1	1	1	1	1
U03326	Silybum marianum	Variegated Thistle	ASTERACEAE	2	2	2	2	2	2	2
C10917	Sisymbrium sp.	Wild Mustard	BRASSICACEAE	1	1	1		1	1	1
U02674	Solanum aviculare	Kangaroo Apple	SOLANACEAE	2	2	-	-	2	2	2
G02679	Solanum elaeagnifolium	Silver-leaf Nightshade	SOLANACEAE	2	2	2	2	2	2	2

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
W04883	Solanum linnaeanum	Apple Of Sodom	SOLANACEAE	2	2	2	-	3	3	3
W02691	Solanum nigrum	Black Nightshade	SOLANACEAE	2	2	2	2	2	2	2
U20178	Sonchus asper ssp.	Rough Sow-thistle	ASTERACEAE	2	2	2	2	2	2	2
K30081	Sonchus oleraceus	Common Sow-thistle	ASTERACEAE	1	1	1	1	1	1	1
C10925	Sonchus sp.	Sow-thistle	ASTERACEAE	1	1	1	1	1	1	1
Q00756	Sparaxis bulbifera	Sparaxis	IRIDACEAE	3	3	3	3	3	3	3
G10927	Sparaxis sp.	Sparaxis	IRIDACEAE	3	3	3	3	3	3	3
S00757	Sparaxis tricolor	Tricolor Harlequin Flower	IRIDACEAE	3	3	3	3	3	3	-
S01777	Spartium junceum	Spanish Broom	FABACEAE	2	2	-	-	3	3	-
A10932	Spergularia sp.	Sand-spurrey	CARYOPHYLLACEAE	1	1	1	1	1	1	1
Z03711	Sporobolus africanus	Rat-tail Grass	POACEAE	1	-	1	1	2	2	1
C05377	Sporobolus virginicus	Salt Couch	POACEAE	2	2	2	2	2	2	-
Y02636	Stachys arvensis	Stagger Weed	LAMIACEAE	1	1	-	-	2	1	1
Z01107	Stellaria media	Chickweed	CARYOPHYLLACEAE	1	1	1	1	1	1	1
C00433	Stenotaphrum secundatum	Buffalo Grass	POACEAE		2	2		2	2	2
S03501	Suaeda aegyptiaca		AMARANTHACEAE	2	2	-	-	-	-	-
S04125	Suaeda baccifera	Seablite	AMARANTHACEAE	2	2	-	-	-	-	-
U05886	Tamarix aphylla	Athel Pine	TAMARICACEAE	3	3	3	2	2	2	3
U10966	Taraxacum sp.	Dandelion	ASTERACEAE	1	1	1	1	1	1	1
S00545	Thinopyrum elongatum	Tall Wheat-grass	POACEAE	3	3	3	3	3	3	3
Y04852	Thinopyrum junceiforme	Sea Wheat-grass	POACEAE	-	-	-	3	3	4	3
S05209	Trachyandra divaricata	Dune Onion Weed	ASPHODELACEAE	-	2	-	-	2	4	-
Q04740	Tragopogon porrifolius	Salsify	ASTERACEAE	2	2	2	2	2	2	2
U01890	Tribulus terrestris	Caltrop	ZYGOPHYLLACEAE	2	2	2	1	1	1	-
E11002	Trifolium sp.	Clover	FABACEAE	2	2	2	2	2	2	2
E03266	Monoculus monstrosus	Tripteris	ASTERACEAE	1	1	1	1	1	1	-
M02882	Tritonia squalida	Tritonia	IRIDACEAE	-	-	-	-	2	2	-
W01883	Tropaeolum majus	Nasturtium	TROPAEOLACEAE	1	-	-	-	2	2	2
Y01844	Ulex europaeus	Gorse	FABACEAE	3	-	3	-	4	4	4
E03346	Urospermum picroides	False Hawkbit	ASTERACEAE	2	2	2	2	2	2	2
M00894	Urtica urens	Small Nettle	URTICACEAE	1	1	1	1	1	1	1

NSX CODE	Species name	Common Name	Family	Threat N/Y	Threat EP	Threat MDB	Threat SE	Threat SMLR	Threat SMLR- CO	Threat KI
A04004	Vellereophyton dealbatum	White Cudweed	ASTERACEAE	1	1	1	1	1	1	1
S02737	Verbascum virgatum	Twiggy Mullein	SCROPHULARIACEAE	2	2	2	2	2	2	-
A30060	Verbena supina var.		VERBENACEAE	1	1	1	1	1	1	-
U11034	Vicia sp.	Vetch	FABACEAE	2	2	2	2	2	2	2
G02483	Vinca major	Blue Periwinkle	APOCYNACEAE	3		4		4	4	4
S11041	Vulpia sp.	Fescue	POACEAE	2	2	2	2	2	2	2
W05991	Watsonia meriana var. bulbillifera	Bulbil Watsonia	IRIDACEAE	2	-	2	-	4	3	3
C11045	Watsonia sp.	Watsonia	IRIDACEAE	2	-	2	-	4	3	3
C30109	Xanthium strumarium	Californian Burr	ASTERACEAE	2	2	3	2	2	2	-
Z03359	Xanthium spinosum	Bathurst Burr	ASTERACEAE	3	2	3	1	3	2	3
C02749	Zaluzianskya divaricata	Spreading Night-phlox	SCROPHULARIACEAE	1	1	1	1	1	1	2
M00586	Zantedeschia aethiopica	White Arum Lily	ARACEAE	2	2	2	-	3	2	3

Appendix 11 Provisional list of threatened ecosystems in SA

Please cite as DEW (in progress) unpublished and provisional list (Originally cited as DEH 2001)

EPBC Status:

Rated

- 1 Buloke Woodlands of the Riverina and Murray-Darling Depression Bioregions
- 2 The community of native species dependent on natural discharge of groundwater from the Great Artesian Basin
- 3 Swamps of the Fleurieu Peninsula
- 4 Iron-grass Natural Temperate Grassland of South Australia
- 5 Peppermint Box (*Eucalyptus odorata*) Grassy Woodland of South Australia
- 6 Giant Kelp Marine Forests of South East Australia
- 7 Grey Box (Eucalyptus microcarpa) Grassy Woodlands and Derived Native Grasslands of South-eastern Australia
- 8 Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains
- 9 Eyre Peninsula Blue Gum (Eucalyptus petiolaris) Woodland
- 10 Kangaroo Island Narrow-leaved Mallee (Eucalyptus cneorifolia)
 Woodland
- 11 Subtropical and Temperate Coastal Saltmarsh
- 12 White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland

State Status: No ecosystems have any official State rating.

State Assessed: All have been assessed for the purposes of the NLWA

Subregion Synopses and Conservation Strategy Case

Studies project (2001).

Threats: Apply across all subregions unless otherwise stated.

Last update: 10 October 2005

Threatened Ecosystems of the Agricultural Regions

ENDANGERED Allocasuarina luehmannii Low Woodland on gilgai soils on

plains

EPBC ACT ENDANGERED

Limited distribution in Bordertown area. Heavily modified and fragmented by clearance for cropping and grazing.

IBRA Regions: MDD Trend: declining

NVIS Subgroup: casuarina and allocasuarina forests and

woodlands Subregion: MDD5

ENDANGERED Associations that have *Allocasuarina luehmannii* as a

subdominant to any one or more of the following:- E. camaldulensis, E. leucoxylon, E. microcarpa, E. largiflorens

EPBC ACT ENDANGERED

Limited distribution in Bordertown area. Heavily modified and fragmented by clearance for cropping and grazing,

and no examples in reserves.

IBRA Regions: MDD Trend: declining

NVIS Subgroup: eucalyptus woodlands with a grassy

understorey
Subregion: MDD5

VULNERABLE Allocasuarina verticillata Grassy Low Woodland on clay

loams of low hills

Formerly extensive but much lost through clearance. Poorly conserved. Some patches with good understorey remain. Probably always patchy by nature. Highly modified

	by clearance, grazing and invasion of exotics. (Note: This does not include <i>Allocasuarina verticillata</i> Low Woodland on calcareous soils on coastal plains with a low shrubby understorey of <i>Lasiopetalum</i> spp., <i>Acacia</i> spp., <i>Acrotriche</i> spp.) IBRA Regions: FLB, KAN, EYB Trend: declining NVIS Subgroup: casuarina and allocasuarina forests and woodlands Subregion: FLB1, FLB2, KAN1, KAN2, EYB1, EYB3	VULNERABLE	Callitris gracilis +/- E. leucoxylon Grassy Low Woodland on quartzite gravels on western footslopes of Adelaide Hills Several examples in reserves but most have disturbed understorey (ie invasion of weeds at expense of native species). IBRA Regions: FLB Trend: declining NVIS Subgroup: callitris forests and woodlands Subregion: FLB1
ENDANGERED	Banksia marginata Grassy Low Woodland on sandy loam plains in higher rainfall areas Highly modified by clearance and grazing, and few examples in reserves. IBRA Regions: NCP, FLB, KAN, MDD, (extinct in EYB) Trend: rapidly declining (extinct in EYB3) NVIS Subgroup: heath and banksia woodlands and shrublands	ENDANGERED	Eucalyptus behriana, +/- E. odorata, +/- E. dumosa Woodland/Mallee on gilgai soils on plains Original small, disjunct occurrences in SA have been subject to extensive clearance and degradation. IBRA Regions: MDD, FLB, EYB Trend: declining NVIS Subgroup: mallee eucalyptus low open woodlands Subregion: MDD4, MDD5, FLB2, EYB3
VULNERABLE	Subregion: NCP1, FLB1, KAN2, MDD4, and extinct in EYB3 Baumea arthrophylla Sedgeland in drainage lines and depressions Threatened by drainage and salinity. Inadequately conserved in Hacks Lagoon CP. IBRA Regions: NCP, KAN, EYB Trend: declining NVIS Subgroup: herbland, sedgeland and rushland Subregion: NCP3, KAN1?, EYB3	VULNERABLE	Eucalyptus camaldulensis var. camaldulensis Woodland on seasonally inundated flats Reduced in extent and still threatened by drainage (not MDD5), extensive clearance and grazing. Inadequately conserved in Mary Seymour CP, Big Heath CP, Penola CP and Glen Roy CP. (Note: this is not a riparian ecosystem.) IBRA Regions: NCP, MDD, VVP, EYB Trend: declining NVIS Subgroup: eucalyptus woodlands with a shrubby understorey Subregion: NCP2, NCP3, MDD5, VVP2, EYB3, EYB4
		ENDANGERED ENDEMIC	E. cneorifolia, E. phenax ssp. 'Kangaroo Island' Mallee on gilgai soils on plains In lower Cygnet River catchment and MacGillivray plateau. Only conserved in Beyeria CP and an adjacent HA.

	Otherwise confined to roadsides where it is threatened by weed invasion and bulldozing.	ENDANGERED	E. dumosa Mallee over Melaleuca uncinata +/- M. wilsonii
	IBRA Regions: KAN		on heavy soils on plains
	Trend: declining		Heavily modified by clearance, grazing and weed invasion.
	NVIS Subgroup: mallee eucalyptus low open woodlands		IBRA Regions: MDD, NCP
	Subregion: KAN1		Trend: declining
			NVIS Subgroup: mallee eucalyptus low open woodlands
ENDANGERED	E. cneorifolia, E. rugosa Mallee over Rhagodia candolleana on glacial sediments on plains		Subregion: MDD2, MDD4, NCP4
ENDEMIC	Locally common on roadsides between Kingscote and Emu Bay. Not conserved and largely confined to roadsides,	VULNERABLE	E. fasciculosa Grassy Woodland on red terra rossa soils of low hills
	where it is threatened by weed invasion and bulldozing.		This has a very similar understorey to E. leucoxylon Grassy
	IBRA Regions: KAN		Woodland. Reserved examples mostly small and degraded
	Trend: declining		eg Glen Roy CP. This ecosystem is vulnerable due to the
	NVIS Subgroup: mallee eucalyptus low open woodlands		widespread poor health of the pink gums. The pink gums
	Subregion: KAN1		generally exhibit limited regeneration, little leaf canopy,
	,		high mistletoe content, lerps and Mundulla Yellows.
			Main recovery action required is further research into
ENDANGERED	E. cretata Mallee on clay loam plains		reasons for the decline.
ENDEMIC	Limited distribution around Darke Peak, and few examples		IBRA Regions: NCP, MDD
	within reserves. Threatened by grazing and weed invasion.		Trend: declining
	(Note: this ecosystem excludes <i>E. cretata</i> Mallee on rocky		NVIS Subgroup: eucalyptus woodlands with a grassy
	hillsides with heath understorey, eg at Carappee Hill.)		understorey
	IBRA Regions: EYB		Subregion: NCP3, MDD5
	Trend: declining		
	NVIS Subgroup: mallee eucalyptus low open woodlands Subregion: EYB5	VULNERABLE	E. fasciculosa +/- E. leucoxylon Heathy Woodland on sandy loams of flats and slopes.
			Reserved examples mostly small and in poor condition.
ENDANGERED	E. dalrympleana ssp. dalrympleana Open Forest on heavy		This ecosystem is vulnerable for the same reasons given
	soils of upland valleys		above.
	Very limited distribution in higher rainfall areas of Mount		IBRA Regions: FLB, KAN, NCP, MDD
	Lofty Ranges. Highly modified by invasion of exotics, and		Trend: declining
	few examples in reserves.		NVIS Subgroup: eucalyptus forests with a heath
	IBRA Regions: FLB, KAN		understorey
	Trend: declining		Subregion: FLB1, KAN1, KAN2, NCP1, NCP3, NCP4, MDD4
	NVIS Subgroup: eucalyptus forests with a heath		
	understorey		
	Lubragiani II DT I/AND		

Subregion: FLB1, KAN2

VULNERABLE E. leucoxylon ssp. pruinosa +/- E. odorata Grassy Low

Woodland on loams of hill slopes

In Mid North from Barossa to southern Flinders. Previously extensive. Poorly conserved. Highly modified by clearance and grazing. Lack of regeneration. (listed in Robertson

1998)

IBRA Regions: FLB Trend: declining

NVIS Subgroup: eucalyptus woodlands with a grassy

understorey

Subregion: FLB1, FLB2, FLB4

VULNERABLE E. macrorhyncha ssp. macrorhyncha Open Forest

A relict occurrence with a very limited distribution in the hills near Clare. A single occurrence conserved in good condition in Spring Gully CP. Most other occurrences are

degraded by grazing and weed invasion.

IBRA Regions: FLB Trend: static

NVIS Subgroup: eucalyptus forests with a grassy

understorey Subregion: FLB2

ENDANGERED E. microcarpa Grassy Woodland on cracking clays on

plains

EPBC ACT Nominated

Limited distribution in Bordertown-Frances area. Heavily modified and fragmented by clearance for cropping and

grazing, and no examples in reserves.

IBRA Regions: MDD Trend: declining

NVIS Subgroup: eucalyptus woodlands with a grassy

understorey

Subregion: MDD4, MDD5

ENDANGERED

E. microcarpa Grassy Low Woodland on foothills and hill

slopes of southern Mount Lofty Ranges

EPBC ACT Nominated

Limited distribution on hills south of Adelaide. Heavily modified by urban spread and associated invasion of exotics. Only a few degraded examples exist within

reserves.

IBRA Regions: FLB Trend: declining

NVIS Subgroup: eucalyptus woodlands with a grassy

understorey Subregion: FLB1

ENDANGERED

E. odorata +/- E. leucoxylon Grassy Low Woodland on

loamy soils of low hills

EPBC ACT CRITICALLY ENDANGERED

Highly modified by clearance and grazing, and the few examples in reserves are very small. *E. odorata* is largely

confined to SA.

IBRA Regions: FLB, MDD, KAN, GAW, EYB

Trend: declining

NVIS Subgroup: eucalyptus woodlands with a grassy

understorey

Subregion: FLB1, FLB2, FLB3, FLB4, MDD2, KAN2, GAW2,

EYB3

ENDANGERED

E. ovata Grassy Low Open Forest in non-saline wetlands Heavily modified and fragmented by drainage, clearance

for grazing and by invasion of exotics. Few examples in

reserves.

IBRA Regions: NCP Trend: declining

NVIS Subgroup: eucalyptus forests with a grassy

understorey

Subregion: NCP2, NCP3

VULNERABLE E. ovata +/- E. viminalis ssp. cygnetensis +/- E. **VULNERABLE** Eucalyptus viminalis ssp. cygnetensis and/or E. viminalis camaldulensis var. camaldulensis Low Woodland in valleys ssp. viminalis Woodland on alluvial soils in moist areas and drainage lines Threatened by clearance, grazing, drainage (in NCP2, Heavily modified and fragmented by clearance for grazing, NCP3) and koalas (in KAN1). and no examples in reserves. IBRA Regions: NCP, KAN, FLB, EYB IBRA Regions: KAN, NCP Trend: declining Trend: declining NVIS Subgroup: eucalyptus woodlands with a grassy NVIS Subgroup: eucalyptus woodlands with a shrubby understorey Subregion: NCP2, NCP3, KAN1, KAN2, FLB1, EYB3 understorey Subregion: KAN1, KAN2, NCP2, NCP3 **ENDANGERED** Freshwater wetlands eq Triglochin procerum Herbland **ENDANGERED EPBC ACT CRITICALLY ENDANGERED (KAN2) – Swamps** E. peninsularis, E. dumosa complex Mallee on loams or of the Fleurieu Peninsula clay-loams on flats **ENDEMIC** Very limited range and only small areas in reserves. Threatened by clearance, drainage, build up off herbicides Reduced in extent and modified by clearance and grazing. and fertilisers from adjacent agricultural land, salinity, **IBRA Regions: EYB** grazing and trampling by stock, and weed invasion. Trend: declining IBRA Regions: all regions NVIS Subgroup: mallee eucalyptus low open woodlands Trend: declining Subregion: EYB3 NVIS Subgroup: herbland, sedgeland and rushland Subregion: FLB1, FLB2, KAN1, KAN2, NCP1, NCP2, NCP3, **ENDANGERED** Eucalyptus petiolaris Grassy Woodland on heavy, fertile MDD3, VVP2, EYB1, EYB2, EYB3, RIV soils on plains **ENDEMIC to EYB** Few examples and highly modified by clearance, grazing, **VULNERABLE** Gahnia filum Sedgeland in drainage lines and depressions **EPBC ACT CRITICALLY ENDANGERED (KAN2) - Swamps** salinisation and degradation by weed invasion. IBRA Regions: EYB of the Fleurieu Peninsula Trend: declining A number of small areas in reserves. An ecosystem that NVIS Subgroup: eucalyptus woodlands with a grassy historically has suffered severe degradation from drainage understorey (in NCP mainly), increased salinity (can tolerate a certain Subregion: EYB3 level) and grazing. Little regeneration evident. IBRA Regions: NCP, EYB, KAN (but most occurs in NCP) Trend: declining NVIS Subgroup: herbland, sedgeland and rushland Subregion: NCP1, NCP3, NCP4, EYB1, EYB3, EYB4, KAN2 **ENDANGERED** Gahnia trifida Sedgeland in drainage lines and depressions (of fresher water than G. filum) A number of small areas in reserves. Has a more restricted

range than G. filum Sedgeland and has less tolerance of

saline water. Consequently it has suffered more from agricultural development. Less remnants remain and it is less well conserved than *G. filum* Sedgeland. Currently threatened by drainage (in NCP mainly) and increased salinity.

IBRA Regions: NCP, EYB Trend: declining

NVIS Subgroup: herbland, sedgeland and rushland

Subregion: NCP1, NCP3, EYB3, EYB4

ENDANGERED Lomandra effusa Tussock Grassland on shallow loams in

low hills

EPBC ACT CRITICALLY ENDANGERED

Heavily modified by clearance, grazing and exotics. Original vegetation structure probably included at least a

scattering of tall shrubs, mallees or low trees.

IBRA Regions: FLB, MDD, KAN, EYB

Trend: declining

NVIS Subgroup: other tussock grasslands Subregion: FLB2, MDD2, KAN2, EYB2, EYB3

ENDANGERED Lomandra multiflora ssp. dura Tussock Grassland on

shallow clay loams in low hills

EPBC ACT CRITICALLY ENDANGERED

Heavily modified by grazing and exotics. Mainly in Burra

Hills.

ENDEMIC IBRA Regions: FLB (Note: not recorded in KAN in

Robertson 1998) Trend: declining

NVIS Subgroup: other tussock grasslands

Subregion: FLB2

ENDANGERED Leptospermum lanigerum Closed Shrubland in non-saline

wetlands

EPBC ACT CRITICALLY ENDANGERED (KAN2) – Swamps

of the Fleurieu Peninsula

Occurs in small disjunct areas. Only small examples conserved. Threatened by drainage (in KAN2 & NCP1),

salinity and irrigation, some of which may be occurring

distant to the ecosystem location. IBRA Regions: FLB, KAN, NCP

Trend: declining

NVIS Subgroup: tall shrublands Subregion: FLB1, KAN1, KAN2, NCP1

VULNERABLE Melaleuca squamea +/- Leptospermum continentale Closed

Shrubland on peaty soils

Threatened by Phytophthora cinnamomi (?), salinity and

drainage (in NCP2, NCP3, VVP2).

IBRA Regions: NCP, KAN (Flinders Chase NP), VVP

RE ID: SA0026 Trend: declining

NVIS Subgroup: tall shrublands Subregion: NCP2, NCP3, KAN1, VVP2

ENDANGERED Themeda triandra +/- Danthonia spp. Tussock Grassland

on heavy, fertile soils of plains and hill slopes.

EPBC ACT Nominated

Highly modified by grazing and weed invasion, and few examples in reserves. May be the result of clearance of

overstorey.

IBRA Regions: FLB, VVP, NCP, EYB?

Trend: declining

NVIS Subgroup: other tussock grasslands Subregion: FLB1, VVP2, NCP1, EYB3?

RARE

Rare Ecosystems in South Australia (Note: List Incomplete)

RARE Eucalyptus willisii ssp. falciformis Open Forest/Woodland on sand

Moderately conserved in several Native Forest Reserves and Heritage

Agreements.
IBRA Regions: NCP
NVIS Subgroup:
Subregion:

RARE Acacia cambagei Low Open Woodland over Typhonium aff.

alismifolium and Nicotiana truncata lining arid watercourses on

gypseous plains

Threatened by stock and feral animal trampling.

IBRA Regions: STP (Moon Plain)

NVIS Subgroup: Subregion:

RARE Eucalyptus conglobata Low Woodland on fertile loams over limestone

ENDEMIC to EYB Originally described by Davies (1982) as E. dumosa ssp. conglobata

Low Woodland of Lower EP, though he also had the same open scrub association listed in sth MLR, sth EP & YP. Now considered to be confined to southern EP and adjacent Taylor and Boston Islands (Nicolle 1997). Large proportion of range conserved within Lincoln

NP.

IBRA Regions: EYB NVIS Subgroup: Subregion: EYB4

RARE Melaleuca armillaris ssp. akineta Closed Scrub in drainage lines

associated with granite. Limited in extent, and much of that is within

reserves.

IBRA Regions: EYB, GAW

NVIS Subgroup:

RARE Eucalyptus cyanophylla Mallee on loamy sand dunes

Limited in extent. Mostly narrow, linear examples remain, though many of these are in Heritage Agreements. Occurs mainly south of the River Murray. Unknown extent in Cooltong CP. Possible

upgrade to Vulnerable if not in this park.

IBRA Regions: MDD, RIV(?)

NVIS Subgroup: Subregion:

Allocasuarina helmsii Shrubland on granitic sands

Moderately conserved in Lake Gilles CP, Gawler Ranges CR and

two Heritage Agreements near Buckleboo.

IBRA Regions: EYB NVIS Subgroup: Subregion:

RARE (?) Triodia compacta Hummock Grassland on sandy consolidated

dunefields

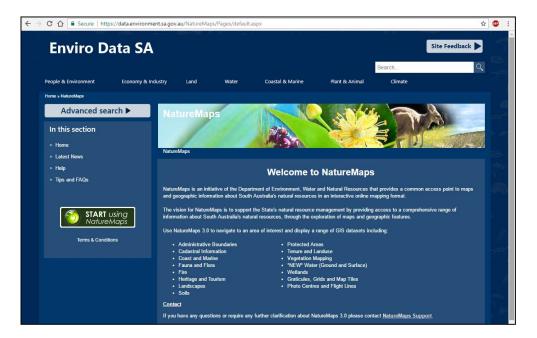
Of limited extent and threatened by coastal development.

IBRA Regions: EYB NVIS Subgroup: Subregion:

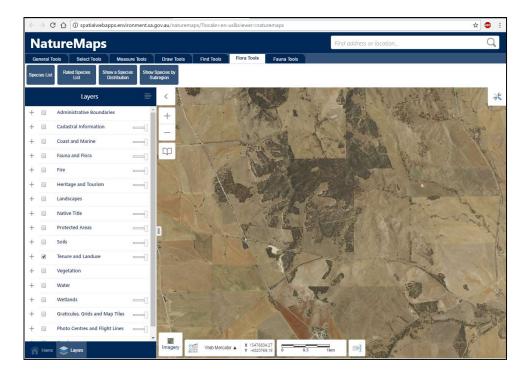
RARE Baumea⁸ juncea, Chorizandra enodis Sedgeland

A number of small areas in reserves. Endangered for SE..

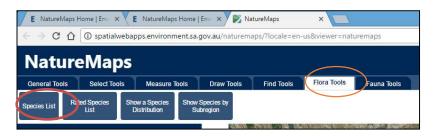
IBRA Regions: NCP, EYB, KAN

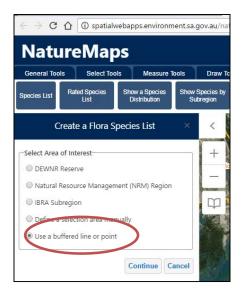

NVIS Subgroup: Subregion:

⁸ Note: *Baumea* has changed name to *Machaerina*


Appendix 12 NatureMaps species search tool

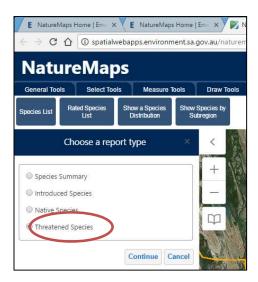
The procedure for downloading detailed species data for records within a specified area is:


1. Start from the NatureMaps home page https://data.environment.sa.gov.au/NatureMaps/Pages/default.aspx

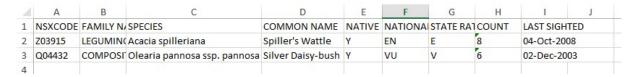

2. Locate the area of interest (area of assessment)

3. Select Flora Tool the select Species list

4. Select Use a buffered line or point

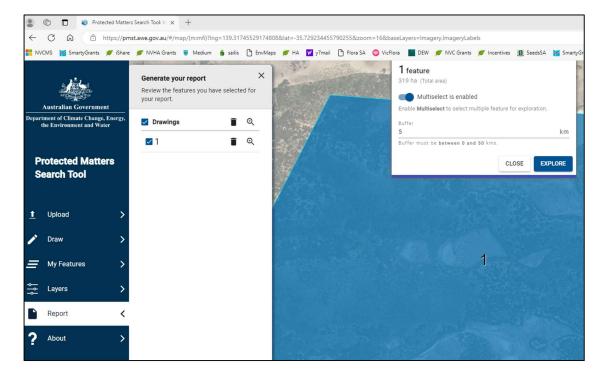


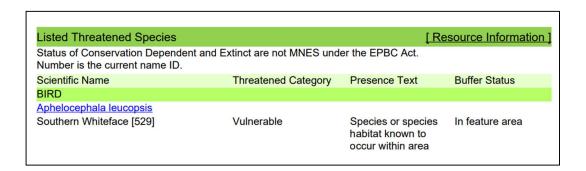
5. Select a point and click on the centroid of the clearance area or SEB area, then enter 5000



6. Select threatened species

7. Select 'Click here' to open species summary report (excel file)




8. Repeat for fauna species

Appendix 13 EPBC Act protected matters search tool

The Australian Government's Protected Matters Search Tool generates a report that will help determine whether matters of national environmental significance or other matters protected by the *Environment Protection and Biodiversity Conservation Act 1999* are likely to occur in your area of interest. Any information provided through this facility is indicative only, and local knowledge and information should also be sought where possible.

- 1. Start the Protected Matters Search Tool
- 2. Zoom to the area of interest
- 3. Select the block using 'Draw' (draw a polygon)
- 4. Select Report, select the relevant drawing and enter 5 km for Buffer.
- 5. Select Explore
- 6. Select Generate Report (PDF or Excel available)
- 7. Review the report to identify threatened species with 'presence text' = '**Species or species habitat known to occur within area'**.

11 References

Croft, S.J., Milne, T.I. & Pedler, J.A. (2005-2009). Bushland Condition Monitoring Manual - Southern Mt Lofty Ranges, Murray-Darling Basin, Eyre Peninsula, Northern Agricultural & Yorke Peninsula regions. Nature Conservation Society of SA, Adelaide.

DEW (in progress). Provisional List of Threatened Ecosystems of South Australia (unpublished and provisional list).

Heard, L. & Channon, B. (1997). Guide to a Native Vegetation Survey (Agricultural Region) using the Biological Survey of South Australia Methodology. Department of Housing and Urban Development, Adelaide.

Milne, T.I. & McCallum, B. (2012). Bushland Condition Monitoring Manual – Benchmark Communities of Kangaroo Island. Nature Conservation Society of SA, Adelaide.

Milne, T.I. & Croft, T. (2012). Bushland Condition Monitoring Manual – Benchmark Communities of the South East. Nature Conservation Society of SA, Adelaide.

Native Vegetation Council (2024) Guide to Calculating a Significant Environmental Benefit. Government of South Australia, Department for Environment and Water, Adelaide.

Oliver and Parkes (2003). A Prototype Toolkit for Scoring the Biodiversity Benefits of Land Use Change. Department of Sustainable Natural Resources, NSW.

Department for Environment and Water

