

TORRENS CATCHMENT WATER MANAGEMENT BOARD

in partnership with the

BOTANIC GARDENS OF ADELAIDE

Torrens Catchment Water Management Board

Department for Environment and Heritage

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens of Adelaide

- Stage 1

September 2005

Australian Groundwater Technologies Pty Ltd

ACN 110 928 928

Level 1, 50 Greenhill Road, WAYVILLE SA 5034

Tel: +61 8 8172 0684 Fax: +61 8 8172 0685 Email: <u>agt@agwt.com.au</u>.

Level 1, 50 Greenhill Road Wayville SA 5034

Ms Marion Santich Manager, Urban Water Torrens Catchment Water Management Boards 5 Greenhill Road Wayville SA 5034 Specialist Consulting Services

Aquifer Storage and Recovery Groundwater recharge processes Wastewater reuse Remediation and contamination of groundwater Short courses for industry and community education

30th September 2005

Dear Marion,

Re.: Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

Please find enclosed two copies of a report describing the recent program to drill an ASR investigation well in the Botanic Gardens.

Stage 1 works comprised:

- project initialisation and field preparation (assess hydro-stratigraphy and site selection, services clearances, etc.);
- drilling, coring and construction of an ASR observation well;
- down-hole geophysical logging; and,
- ◊ reporting

Please note that reference in this report is made to the Permit No. (PN 102084) as the Well Unit No. had not been issued for the Botanic Gardens bore at time of reporting. The Well Unit No. has subsequently been issued and is 6628-22152.

Kind regards

Eric Rooke **Principal Consultant** for and on behalf of Australian Groundwater Technologies Pty Itd

TABLE OF CONTENTS

1. STUDY OBJECTIVE AND PREAMBLE	6
2. SCOPE OF WORK	
3. GEOLOGICAL AND HYDROGEOLOGICAL INTERPRE	ETATION7
4. DRILLING INVESTIGATION	
4.1 SITE LOCATION	
4.2 PRESCRIBED DRILLING PROGRAM	
4.3 AS CONSTRUCTED DRILLING COMPLETION	9
4.4 INTERPRETATION	
4.4.1 Sedimentary Rock Sequence	12
4.4.2 Fractured Rock Sequence	
5. GEOPHYSICAL LOGGING	14
5.1 INTERPRETATION	14
5.1.1 Calliper	14
5.1.2 Natural Gamma	14
5.1.3 Spontaneous Potential	14
5.1.4 Single Point Resistivity	15
5.1.5 Neutron	15
5.1.6 Density	15
5.1.7 Acoustic Scanner Log	
6. INTEGRATION AND INTERPRETATION OF DRILLING	G/LOGGING
DATA	16
7. CONCLUSIONS	19
7.1 SEDIMENTARY ROCK SEQUENCE	
7.2 FRACTURED ROCK SEQUENCE	
7.3 RECOVERY CAPABILITY	20
8. RECOMMENDATIONS	21
9. REFERENCES	23
APPENDIX 1 SUMMARY DRILLER'S LOG	
APPENDIX 2 GEOLOGICAL LOG OF CUTTINGS - PN 102084	
APPENDIX 3 GEOLOGICAL LOG OF CORE – PN 102084	
APPENDIX 4 PHOTOGRAPHS OF CORE – PN 102084	
APPENDIX 5 WATER QUALITY RESULTS - PN 102084	
APPENDIX 6 RECOVERY MEASRUEMENTS - PN 102084	
APPENDIX 7 GEOPHYSICAL LOGS – PN 102084	
APPENDIX 8 GLOSSARY	57

LIST OF FIGURES

Figure 1	Location plan, Adelaide Parklands ASR Investigations	8
Figure 2	Botanic Gardens of Adelaide Well Site Location, Permit No. 1020	8411

LIST OF TABLES

Table 1 Summary of ASR Opportunities at Botanic Gardens	6
Table 2 Well PN 102084 – Sedimentary Rock Sequence – Hydro-stratigraphic	
Summary	12
Table 3 Significant Fractures interpreted from Acoustic Scanning Logging versus	
Geological Logging (NQ core hole only)	.17

1. STUDY OBJECTIVE AND PREAMBLE

The objective of this study is to assess the viability of aquifer storage and recovery (ASR) for Adelaide's Botanic Gardens, primarily by investigating the potential for the Adelaidean Basement fractured rock aquifer to bank and recover water.

Stage 1 of this study, reported herein, consisted of drilling an observation well in the Adelaide's Botanic Gardens as part of gaining an appreciation of the groundwater component of an ASR scheme.

As part of a water resource study of the Botanic Gardens (Ecological Engineering, 2003), AGT prepared a desk-top study of groundwater including ASR opportunities for irrigation supply¹.

Table 1 summarises this desk-top study.

Aquifer	Hydrogeology	ASR potential
Quaternary (Q)	Thin, limited areal extent (sinuous lenses/channels); limited storage; shallow water-table	Injection and recovery rates of 3 L/s Bankable storage < 50 ML/year
		Recovery Efficiency (RE) > 75 %
Tertiary (T1)	Greater storage capacity than Q Expected yield 0.5-1.5 L/s Expected TDS = 1,300-3,800 mg/L SWL = 7 - 15 m	'well yields expected to be too low for a viable ASR scheme'
Adelaidean	Limited hydrogeological data (no wells drilled into bedrock at locality). Anticipated yields of 1 - 10+ L/s Anticipated TDS 1,500 - 2,500 mg/L	Most potential, (storage capacity & injection rate/well yield). RE lowest of the 3 aquifers. Salinity is unsuitable, unless shandied with mains water or stormwater

Table 1 Summary of ASR Opportunities at Botanic Gardens

¹ This study estimated an irrigation demand of about 120 ML/year, with an average demand of 25 ML/month between December and March. (For 8 hour pumping cycles this equates to 30 L/s). Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

2. SCOPE OF WORK

The Scope of Work emanates from a variation issued on 25th October 2004 by the Torrens Catchment Water Management Board (TCWMB) as part of Stage 1 (essentially, drilling investigations) of the Adelaide Parklands investigation.

This scope of work is reproduced as follows:

- Drill an investigation hole to determine the underlying strata and prospects of intersected aquifers to be productive at the location. This will be achieved by mud drilling through the Tertiary sequence taking 1-metre samples to interception of the basement below the weathered zone. The hole shall then be cased and the basement diamond cored for a maximum of 50 metres with the core being appropriately logged. The hole is to be completed as a 100 mm diameter observation bore;
- Down-hole geophysics to be run on the upper and lower sections of the hole;
- Information to be collected and an assessment made as to the suitability of the site for ASR; and,
- Reporting of findings.

3. GEOLOGICAL AND HYDROGEOLOGICAL INTERPRETATION


Little prior data was found to elucidate the bedrock hydrogeology of the Botanic Gardens.

All wells recorded from DWLBC's database are shallow (less than 20 m deep and, presumably, penetrate only the Quaternary). Some deeper drill-holes are situated in the vicinity but generally have inadequate associated data or none at all, apart from coordinates and total depths (Figure 1).

A hydrogeological section derived by Gerges (1999) suggests the following sequence, with inferred thicknesses, might be anticipated:

0 -15m:	Quaternary Hindmarsh Clay -clay with interbedded sand and gravels
	(Q aquifers)
15 – 30 m:	Blanche Point Marl – clay with chert, marl, limestone
30 – 35 m:	South Maslin Sands
35- 40 m:	Clinton Formation – lignite and clay
40– 90 m:	Weathered Adelaidean Basement – mostly clay and clay bound gravel
> 90 m:	Fresh Adelaidean Basement – slate, quartz, dolomite, phyllite

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens - Stage 1

8

4. DRILLING INVESTIGATION

4.1 SITE LOCATION

The location of the investigation bore is depicted on Figure 2. It is sited approximately 50 m due south of the Bicentennial Conservatory adjacent to the east bank of First Creek. This site was pre-selected in conjunction with the TCWMB and Department for Environment and Heritage, Botanic Garden's Project Officer.

4.2 PRESCRIBED DRILLING PROGRAM

The drilling program was stipulated as follows:

- drill into the top of fresh bedrock to unknown depth (probably more than 120 m BGL) using the mud-rotary drilling technique;
- geophysically log (calliper, gamma, nuclear density, induction, and fluid temperature/fluid conductivity);
- o cement 100 mm NB Class 12 PVC into the top of fresh bedrock;
- o run HQ temporary casing;
- o core the next 50 m maximum using NQ core barrel;
- withdraw HQ casing;
- o geophysically log (calliper and acoustic televiewer); and,
- o complete as an observation bore with a lockable surface cap.

4.3 AS CONSTRUCTED DRILLING COMPLETION

This investigation bore was drilled through a Quaternary and Tertiary sequence of sedimentary rocks into the Adelaidian Basement ('fractured rock') at the Botanic Gardens to a total depth (TD) of 186 m. Mud-rotary drilling was used to penetrate through the sedimentary rocks into the top of 'fresh' fractured rock at 118 m. The drill-hole was cased with 100 mm nominal diameter (NB) Class 9 PVC casing to 115 m, with the annulus cemented down to top of fractured rock. NQ hole size (76 mm NB) diamond coring was used to sample the fractured rock from 118.2 m to TD. TD was reached at 186.1 m thereby giving 67.9 m of core.

After consulting the client, due to promising signs of permeability at depth, coring exceeded the 50 m maximum specified. Despite encountering ongoing fractures at depth, coring was terminated due to (a) exceeding the specification (with consequent budgetary constraints) and, (b) problems in continuing drilling circulation.

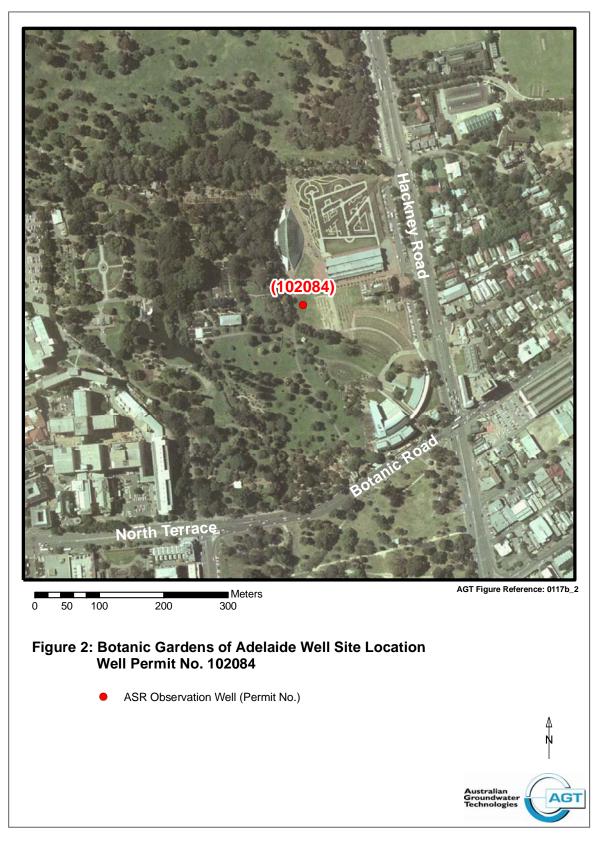
The hole has been completed as an observation bore.

The mud drilled section of the hole was sampled and logged every metre. Soil/rock cuttings and cores have been archived in the PIRSA core library.

Appendix 1 details the schedule of drilling to complete this observation well.

Appendix 2 reproduces the well-site geologist's log of the drill cuttings obtained from the sedimentary rock sequence.

Appendix 3 presents a description of the core, logged and photographed (see Appendix 4) in the laboratory.


At the time of drilling and well completion, groundwater samples and yield estimates could not be taken due to the nature of the drilling. Subsequently, DWLBC, Groundwater Technical Services was engaged over a two day period (13th and 14th September 2005) to clear the bore of remnant drilling fluid, first by water-flush, then by airlift. Approximately 8.5 kL of water was airlifted at a rate of approximately 9 L/s until the water was essentially clear. The conductivity of the airlifted water measured between 2,970 and 3,010 ppm. Following cessation of airlifting, recovery back to SWL was measured for 1 hour. Water samples were collected and delivered to AWQC for analysis.

Water quality results and recovery measurements are appended (Appendix 5 and 6, respectively.

The laboratory measured groundwater TDS was 2,900 mg/L. Ions that are particularly concentrated in the groundwater are sodium (679 mg/L), Chloride (1,330 mg/L) and iron (2.07 mg/L). The native groundwater would be unsuitable for irrigation in terms of salinity and sodium hazards.

A transmissivity (T) value of $44 \text{ m}^2/\text{day}$ was analysed from the recovery measurements.

4.4 INTERPRETATION

4.4.1 Sedimentary Rock Sequence

The hydro-stratigraphy interpreted from description of the drill cuttings obtained from the sedimentary rock sequence is presented in Table 2.

Table 2 Well PN 102084 – Sedimentary Rock Sequence – Hydro-stratigraphic	
Summary	

Depth interval (m)	Formation	Hydrostratigraphic Unit	Hydrogeological Classification	
0-15	Q/Pt Willunga	Q1/Q2	Semi-confined aquifer	
15-21	Chinaman Gully	-	Aquiclude. Confining bed	
21-24	Tandanya	T1/T2 (equivalent)	Aquiclude/aquitard	
24-47	Blanche Point	-	Aquitard	
47-48	Tortachilla	T3 (equivalent)	Confined aquifer	
48-50	S. Maslin Sds.	T3 (equivalent)	Aquitard	
50-60	S. Maslin Sds.	T3 (equivalent)	Confined aquifer	
60-88	Clinton	-	Aquiclude (minor aquitards)	
88-112	Saddleworth?	Weathered basement	Aquiclude	
112-118	Saddleworth	MW basement	Aquifer?	

The Quaternary aquifer might produce superficial amounts of groundwater from shallow wells or spear-point wells, but would be unsuitable for ASR^2 .

The only other aquifer of any hydrogeological significance is part of the South Maslin Sands, T3 aquifer (10 m thick). This may yield a reasonable supply of groundwater with good well construction and well development techniques. However it would be problematic for ASR due to its carbonaceous, silty matrix³.

4.4.2 Fractured Rock Sequence

The summary driller's log Appendix 1 indicates water loss intervals that are indicative of the potential yield.

It is difficult to judge whether drilling fluid losses into the formation are cumulative or not owing to the drilling methodology. The yield appeared to decrease from 2 L/s

² Too shallow for injection without potential surface environmental impact and, seemingly, of limited areal extent and unpredictable grading (i.e. generally poorly-sorted).

³ In addition the silt fraction, the lignitic particles would tend to align on injection/recovery leading to clogging

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

then stabilize below about 137 m at 1.2 - 1.7 L/s as hole was made. This decrease in yield is probably an artifact of increasing mud-weight and viscosity as mud was added to maintain circulation; hence the possible plugging of water-bearing fractures above. It is probable, however, that the yield is underestimated and is, in part, cumulative.

Apart from intervals 132.7 - 132.8 m and 183.83 – 186.0 m, zones of lost core (no core return) appear to comprise of rock-breaks rather than genuine voids or open joints/fractures (refer Table 3).

A water loss of maximum 2 L/s was estimated (by means of water loss whilst circulating through the mud-pits). This is considered to be an under-estimate due to the inherent difficulty of estimating water circulation in a dynamic situation, combined with the inhibition of circulation by the accumulation of cuttings in the hole and viscosity agents added to assist lifting of cuttings (refer Section 6 for synopsis)

5. GEOPHYSICAL LOGGING

Geophysical logging was not undertaken in the open hole prior to casing because the sedimentary formations showed little aquifer potential. Instead logging of the hole was conducted post-casing and drilled TD.

Logging was carried out on 8th March 2005 by Geophysical Technical Services, DWLBC. The spontaneous potential (SP), single point resistivity (SPR), and density sondes were re-run on 17th May 2005 after poor results at the first attempt whence the former two may have been influenced by excessive drilling mud left in the hole, and the latter one by malfunction.

The important sections of the logs are graphed in Appendix 7.

A short glossary of the geophysical techniques employed is provided as Appendix 8.

The major features of hydrogeological interest are discussed under Section 5.1.

5.1 INTERPRETATION

5.1.1 Calliper

- Rugose zone between base of 100 mm NB permanent casing at 115 m and 118 m which, although an artefact of drilling completion to this depth (6" bit) rather than a geological feature per se does substantiate the driller's record (Appendix 1) of variable hard-bands and fractures.
- Very fine, constant chatter throughout total depth of NQ cored hole indicating 'bedding laminae' and, potentially, uniform lithology with no major fractures/joints/voids detected. Slight, progressive apparent reduction in hole size with depth is probably due to hole being drilled somewhat out of vertical.

5.1.2 Natural Gamma

- Lower counts toward base of Quaternary / T1 (aquifer?).
- Low counts between 49 and 60 m marking T3 aquifer (geologist's log indicates interval 50-60 m).
- Shift in gamma towards greater counts in transition zone into highly weathered bedrock (at approximately 80 m) owing to clays (coincident with Clinton/weathered Clinton formation on geologist's log).

5.1.3 Spontaneous Potential

 A positive deflection in the SP log occured as the sonde just exited bottom of casing at 115 m.

• Other positive 'kicks' occur at 154 m and at 157 m and just below 180 m. Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

5.1.4 Single Point Resistivity

- Coincident with the SP reaction at 115 m is a low SPR response that may indicate a zone of saline groundwater to about 118 m (gravelly bedrock logged by geologist).
- Coincident with the SP reaction at 154 m and at 157 m is a zone of slightly lower resistivity.
- Coincident with the SP reaction just below 180 m is left 'kick' (lower resistivity) in the SPR.

5.1.5 Neutron

- \circ The neutron log detected the SWL at approximately 3 m bgl (March, 2005)⁴.
- Coincident with SP and SPR reactions is a decrease in the neutron log count indicating potentially a zone of high porosity from bottom of casing to 118 m.
- Coincident with SP and SPR reactions is subdued decreases in the neutron log count at 154 m and at 157 m and a stronger reaction just below 180 m.
- A zone of slightly lower neutron counts between 162 and 168 m may reflect moisture content in porous veins and laminae (refer geologist's log, Appendix 3) rather than greater permeability per se.

5.1.6 Density

 \diamond The density log hardly reacts; therefore is of little diagnostic use⁵.

5.1.7 Acoustic Scanner Log

Geoscience (2005) has produced independently a report that interprets in great detail results of the acoustic scanning logging run by DWLBC.

Logging took place between 107.7 m and 184.7 m; i.e. was mostly confined to the NQ section of the hole.

Below is a précis of that information of import to the groundwater resource potential.

Many minor fractures are recorded (Appendix G, Geoscience, 2005) however geological logging of the core has indicated that the vast majority of these are hydrogeologically insignificant.

⁴ The rest of the log through the cased section appears to indicate signal attenuation.

⁵ Its signal may have been attenuated by drilling mud left in the hole.

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

6. INTEGRATION AND INTERPRETATION OF DRILLING/LOGGING DATA

Table 3 presents a 'matrix' of where significant fractures interpreted by the acoustic scanner processing tallies with those geologically logged for the cored section of the hole, and recorded by the driller/site geologist.

Of these 'matching fracture zones' the ones considered potentially groundwater-bearing are, approximately, the intervals:

- $114^{1} 118.2^{2}$ m: ٥
- 118.2 119.1 m; ٥
- 132.4; 132.7 132.8 (and, possibly, 138.2 m); Δ
- 155.4 156.2;٥
- 180.1 180.7; and, ٥
- 183.8 (possibly to EOH). ٥

It is considered that most of the groundwater was encountered in the zones 114 - 119 m, 155 – 156 m, and 180 – 181 and at 183 m (to TD?).

The general lithology of the core indicates a predominantly metamorphosed, indurated siltstone/mudstone with 'cleavage-like' fractures and laminated rock fabric (rather than joints).

The bore was airlifted at rate of approximately 9 L/s of groundwater salinity 2,900 mg/L with most of the supply probably emanating from the weathered zone between114 and 118 m. The aquifer's transmissivity (T) value (over the open section) is $44 \text{ m}^2/\text{day}$. This indicates a productive fractured rock aquifer in terms of yield.

 $^{^1}$ 114 – 115 m cased off. 2 The permeability within this interval is due to a combination of weathered rock and fractures.

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens - Stage 1

Table 3 Significant Fractures interpreted from Acoustic Scanning Logging versus Geological Logging (NQ core hole only)

Acoustic scanner (depth m bgl)	Comment	Geological Log (depth interval m bgl)	Comments	Drillers Log (depth interval m bgl)	Comments
118.3 - 119.13	Either "sedimentary fabric" or "minor fracture"	118.2 – 119.1	Broken and sheared	117 - 118	"Hard interbeds & possible fractures"
132.45	"Sub-major fracture"	132.4; 132.7 - 132.8	Latter no core returned	131.4; 132.9	"Significant water loss from pits" (2 L/s)
-	-	138.2	Mineralised fracture	137.4	"Significant water loss from pits"
143.54	"Minor Fracture"	-	-	142.4; 143.5	"potential fractures"
146	"Minor Fracture"	-	-	145.9	"potential fractures" (1.7 L/s)
154.75; 154.91	"Minor Fracture; Fracture?"	-	-	154.8 – 155.2	"vertical fractures"
155.59	"Sub-major fracture"	155.4 – 156.2	Shatter zones, iron- stained joints	155.5 – 156.2	"vertical fractures; significant water loss"
157.63	"Sub-major fracture"	157.6	-	156.7 – 156.9; 157.4	"potential fracture zones' (1.7 L/s)

Acoustic scanner (depth m bgl)	Comment	Geological Log (depth interval m bgl)	Comments	Drillers Log (depth interval m bgl)	Comments
158.13	"Sub-major fracture"	158.0	Brittle fracture?	158.0	Brittle fracture?
166.77	"Fracture?"	-	-	166.8	"potential fracture"
179.4	"Minor fracture"	-	-	179.4	"potential fracture"
180.19	"Major fracture"	180.15 - 180.65	Very broken; two joint sets	180.15 – 180.65	Very broken; two joint sets
180.34; 180.53; 180.62	"Sub-major fracture"	180.15 - 180.65	As above	180.15 – 180.65	As above
183.83	"Sub-major fracture"	183.83 - 186.0	No core returned	183.83 - 186.0	No core returned

7. CONCLUSIONS

7.1 SEDIMENTARY ROCK SEQUENCE

- o The Quaternary aquifer may be suitable for supplementary supplies for irrigation and, possibly, for smalls-scale ASR development. Previous experience of wells completed within the same aquifer in the vicinity suggests sustainable pumping yields of about 3 L/s.
- In developing ASR within the Quaternary aquifer a careful assessment would be required to assess potential interaction with the surficial environment.
- The potential exists for a relatively low permeability aquifer in the North Maslin Sands (NMS) between approximately 50 and 60 m bgl.
- The NMS aquifer could not be easily exploited for ASR due to its lithology.
- With careful well completion and development (as dedicated extraction wells) the NMS aquifer might yield exploitable quantities of groundwater of unknown salinity.

7.2 FRACTURED ROCK SEQUENCE

- The fractured rock is a predominantly metamorphosed, inducated siltstone/mudstone with 'cleavage-like' fractures and laminated rock fabric (rather than joints).
- The fractured rock sequence has many thin, sometimes isolated and re-healed fractures; the latter two types exhibiting little permeability.
- A zone of *weathered* fractured rock grading to fractured rock (fractured rock permeability enhanced by seemingly clay-free weathered rock) occurs between 114 m and 119 m. This interval may constitute the most productive zone.
- The main *fracture* zones in order of permeability (consequently, groundwaterbearing capacity) potential occur between 180 m and 181 m, 155 m and 156 m, and 183 m (possibly to TD).
- The bore was airlifted at rate of approximately 9 L/s of groundwater salinity 2,900 mg/L with most of the supply probably emanating from the weathered zone between114 and 118 m.
- The aquifer's transmissivity (T) value (over the open section) is 44 m2/day. This indicates a productive fractured rock aquifer in terms of yield.

 Severe clogging during the ASR cycle by suspended solids and nutrients may be problematic due to the thinness of the fractures⁸. To combat this potential clogging, membrane (nano-) filtration as part of tertiary treatment of the source injectant water would almost certainly be necessary.

7.3 RECOVERY CAPABILITY

There is potential for recovering 45-50 ML/a of injected water based on the measured airlift yield and assuming a recover efficiency of 75 %. This would be suitable for irrigating an oval of, say, 4 ha area given a 3 months irrigation season. Recovery efficiencies are very unpredictable in fractured rock aquifers and this estimate is a best guess only. Aquifer testing, as recommended in Section 8, is a prerequisite to confirm this estimate.

⁸ This should be investigated as part of any Stage 2 investigations.

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

8. **RECOMMENDATIONS**

The recommendations below only pertain to the groundwater part of the ASR scheme; they do not address hydrological yield of source water.

The key issues to progress the development of a potential ASR scheme for the Botanic Gardens of Adelaide (BG) site are:

- anticipated long-term recharge (harvesting) and injection rate, long-term annual recharge volume, and long-term annual recovery rate (flow and volume including the recover efficiency, RE);
- assessment of the likely salinity of recovered volumes dependent on salinity of the groundwater and assumed salinities of the source water (cf the RE);
- environmental risks associated with injection, banking and recovery of water at the site; and,
- recommendations for further studies and investigations to satisfy all information and EPA requirements pertaining to establishing a successful ASR scheme at the BG site.

Cognisant of these issues the following recommendations are made:

- the Board and DEH should instigate negotiations with the EPA to assist in gaining a trial ASR licence⁹ for the BG site;
- after negotiation with the Board and EPA, and at the behest of EPA, drill (a) dedicated monitoring bore(s) (MB), say, from 20 m-50 m distant from PN 102084. Structural analysis indicates that at least one monitoring bore should be sited N of PN 102084 and possibly another ESE (to intersect the 'sedimentary fabric' assuming this is hydraulically conductive)¹⁰.
- test pumping¹¹ PN 102084 is recommended as follows:
 - a 24 hour well test with four steps at 100 minutes duration; at rates of 2, 4, 6 and 9 L/s (the last step extended) followed by a 24 hour recovery test. Well performance parameters (including well efficiency) analysed from this test should determine anticipated long-term yield and dictate progress to injection testing.

⁹ Especially related to compliance requirements re. ASR of the Environment Protection (Water Quality) Policy 2003 (EPPWQ). (Within Adelaide metropolitan area, the EPA will licence an ASR project as a 'prescribed activity of environmental significance' if discharge of stormwater to the aquifer occurs from a catchment area of more than one hectare or, if the stormwater as been significantly chemically treated).

¹⁰ assuming local groundwater flow-path follows the structural azimuth and dip

¹¹ Injection and recovery testing shall begin subject to successfully gaining a trial ASR licence from the EPA.

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

- o drawdown in MB(s) should be recorded, too during test pumping
- Injection testing of PN 102084 using mains water¹² for 5 7 days at a rate dictated by the results of the test pumping;
 - o impress in MB(s) should be recorded, too during injection
- 5-7 days recovery ('pump-out'), or until the groundwater salinity returns to its ambient (native) TDS
 - o drawdown in MB(s) should be recorded, too during pump-out

Both pumped and pump-out tests [including MB(s)] should be monitored manually in addition to monitoring by data-loggers. The monitoring of the ASR test bore, PN 102084 should incorporate in-line water quality testing for pH, temperature, Electrical Conductivity and Dissolved Oxygen. The mains water's TDS and temperature would be verified prior to injection testing.

During this well testing program, there is an opportunity to carry out groundwater flow tracing to inform and conceptualise the local hydrogeological regime. It is recommended (initially anyway) that simple techniques such as groundwater temperature monitoring, fluorescin dye and/or salt-slug techniques are employed¹³. Packers could be deployed both in PN 102084 and the MB(s) (with possible pumping of MB and observation of PN 102084, too) to determine flow paths and fracture contributions.

Given the fracture detail revealed from the Stage 1 investigation, and after analysis of the testing program, (anisotropic) groundwater numerical modelling (GWM) should be employed to attempt to:

- predict the shape of the injectant plume; and,
- \diamond simulate recovery and test recovery scenarios including the recovery efficiency¹⁴.

GWM might employ an analytical spreadsheet basis or Modflow-MT3D (PMWIN).

¹² Aerated through a holding tank per EPA requirement to purge free chlorine prior to injection

¹³ Rather than environmental in-situ tracer such as Cl36 or CFCs

¹⁴ for a threshold salinity of recovered volume dependent upon mixing with the salinity of native groundwater and assumed salinities of the source water

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

9. **REFERENCES**

Ecological Engineering, 2003. Adelaide Botanic Gardens – Waterways Study, May 2003.

Geosciences, 2005. Acoustic Scanner logging – Interpretation Report and Job Summary BH: PN102084 for the PTCWMB, March 2005.

Gerges, N.Z., (1999). The Geology and Hydrogeology of the Adelaide Metropolitan Area. Flinders University of S.A. PhD Thesis.

APPENDIX 1

SUMMARY DRILLER'S LOG

PN102084 – Summary of Driller's Log

Coordinates: GDA 94 Zone 54

281895E 6133460N

Driller:Underdale Drillers, Drilling SolutionsDrill method summary:Rotary mud with TH60 rig to 118 mCased and pressure cemented to 115 mDiamond cored with MK5 rig to 186.15 mHole geophysically logged to 185.3 m

Date	Depth (m)	Description
22/02/05		Drilling activities at 102084 commence
		Bridge reinforced for truck access and mud pits prepared
		Underdale TH60 Rig on site
23/02/05	0 - 45	Rotary mud drilling commences using a 7" blade bit
	45 – 113	Changed to 6.5" blade bit
		Drilling 'got firm' at around 107 m
	113 – 115	Fitted 6" rock roller bit
		Penetration rate of $\sim 3 \text{ m/hr}$
		Bit refused at 115 m
24/02/05	115 – 116	Drill head hammering at 116 m
	116 - 118	Hard interbeds and possible fractures 117 m – 118 m
		Penetration rate of < 4 m/hr
	118	Maximum drilled depth of upper hole reached
		Hole cased to 115 m using 100 mm PVC
		Hole was pressure cemented using: 50 x 20 kg bags
		cement, 1225 L water and 50 kg bentonite
		DWLBC Drilling inspector present during pressure
		cementing
		Cement was not observed to reach the top of the anulus
25/02/05		Underdale TH60 Rig departs site
28/02/05	118 – 118.9	Drilling Solutions MK5 Rig on site
		Diamond coring commences
		Cement plug encountered at 112.4 m
		Grout and lignite evident in retrieved core (connected
		fractures)
		Starting to drill fresh ground at ~ 118.4 m
1/03/05	118.9 - 120	Significant water loss with no circulation to clear cuttings
		from hole
		Aus-Plug (hydrated crystals) added to control water loss
		and re-establish circulation
	120 - 122.7	Penetration rate ~ 5.7 m/hr through broken ground
	122.7 – 126.4	Hard rock encountered at ~ 124.4 m, circulation lost
		Hard rock encountered at ~ 125.4 m
		Penetration rate $\sim 4.2 \text{ m/hr}$
		Water loss ~ $1.65 L/s$
	126.4 – 129.4	Penetration rate $7 - 8 m/hr$
		Potential fracture zone ~ 129.1 m
	129.4 - 141.4	Penetration rate ~ 7.2 m/hr

		Significant water loss from pits at ~ 131.4 m, 132.9 m,
		137.4 m
		Water loss ~ $1.8 - 2 L/s$
2/03/05	141.4 - 142.3	1,000 L water tank brought on site to supplement water supply to pits
	142.3 - 147.4	Potential fracture zones at ~ 142.4 m, 143.5 m, 145.9 m,
	147.4 – 150.4	147.6 m, 148.2 m, 149.4 m and 150 m Water loss ~ 1.58 L/s
	147.4 - 130.4	Water loss ~ 1.38 L/s Penetration rate ~ 7.2 m/hr
		Resistant layer at ~148.2 m
	150.4 – 156.4	Driller having difficulties maintaining drill rotation,
	150.4 - 150.4	possibly due to accumulation of cuttings in hole
		Bio-Vis drilling mud added to pits
		Penetration rate $\sim 5.2 \text{ m/hr}$
		Vertical fractures at $\sim 154.8 - 155.2$ m and at $155.5 -$
		156.2 m
		Significant water loss was observed, coincident with
		drilling through these fracture zones
		Driller having difficulties maintaining drill rotation
	156.4 - 157.4	Bio-Vis drilling mud added to pits
		Potential fractures zones at ~ $156.7 - 156.9$ m and 157.4 m
		Water loss ~ 1.65 L/s
		Liqui-Pol viscosifier added
	157.4 - 161	Drill rods cavitating
		Penetration rate ~ 3.6 m/hr
		Drill head failure
3/03/05	161 - 170.9	Liqui-Pol viscosifier added
		Water loss ~ 1.4 L/s (cuttings potentially blocking
		fractures)
		Potential fracture zones at 161.3 m, 166.8 m and 170.2 –
		170.5 m
		Penetration rate $\sim 5 \text{ m/hr}$
		Drill rotation problems
4/04/05	170 0 100 1	No Drilling
7/03/05	170.9 – 180.1	Potential fracture zones ~ 173.4 – 173.6 m, 174.8 –
		175.1 m, 175.4 – 175.6 m, 176.3 m, 179.4 m
		Penetration rate ~ 1 m/hr
		Drill rotation problems Drill head hammering ~ 178.1 m
	180.1 – 180.6	Poor or absent water returns
	100.1 - 100.0	Pool of absent water returns Penetration rate $\sim 2 \text{ m/hr}$
		Water loss ~ 1.25 L/s
		Liqui-Pol viscosifier and CR-650 added directly into casing
		and washed down with hose
		New drill head fitted
8/03/05	180.6 - 186.15	Penetration rate ~ 3 m/hr
0,00,00	100.0 100.15	Potential fracture zone at $\sim 185.8 \text{ m}$
	1	

	Water loss ~ 1.69 L/s
186.15	Bottom of Hole
	Hole cleaned by driller using a core catcher in preparation
	for geophysical logging
	Hole successfully geophysical logged to a depth of 185.3 m
	Drilling Solutions MK5 rig departs site
	Drilling operations concluded
	Underdale Drillers to clean site

APPENDIX 2

GEOLOGICAL LOG OF CUTTINGS – PN 102084

Dril Depth		Litho	logy	Description	Formation	Aquifer
From	То	Major	Minor			
0	1	n/a	n/a	Undifferentiated sand, silt and gravel	Recent	
1	2	Sand	Clay	Dark brown sandy clay		
2	3	Sand	Clay	Orange brown sandy clay		Cb ¹⁵
3	4	Sand	Clay	Brown sandy clay		
4	5	Clay	Sand	Orange brown medium to coarse sandy clay	Q	
5	7	Clay	Sand	Orange brown clay, some fine sand	uate	
7	8	Sand	Clay	Light brown sandy clay, some light grey silt	rnary	
8	9	Sand	Gravel	Light brown medium sand and coarse angular quartz gravel	Quaternary Alluvium	Q1/ Q2
9	10	Sand	Gravel	Yellow brown medium sand and angular to rounded coarse quartz gravel	ium	
10	12	Sand	n/a	Yellow fine sand, some nodules of grey brown fine sand		
12	13	Sand	n/a	Light grey fine sand		
13	14	Sand	n/a	Yellow and grey fine sand	_ ∃ ≦ _	
14	15	Sand	Silt	Light grey fine sand and yellow brown silty fine sand	Port Willunga Fm. Sand Unit	T1 Equivalent
15	20	Clay	Silt	Dark grey silty, lignitic clay		
20	21	Clay			- G C	
21	22	Sand	n/a	SiltDark grey to black silty clayn/aBlack carbonaceous fine sand		T2
22	24	Sand	n/a	Dark grey to black carbonaceous fine silty sand	Chinaman Gully Fm Tandanya Sand	Equivalent
24	27	Siltstone- Sand- Marl	Silt	Grey brown highly carbonaceous fine sand, marl, (note: acid reaction below this depth).	Blanch Rock	
27	45	Siltstone- Sand- Marl	Silt	Grey carbonaceous marl, fine sand and silt. Glauconitic	le Poin Memt Lin	СЬ
45	46	Siltstone- Sand- Marl	Shells	Brown grey carbonaceous medium sand, shells. Glauconitic	oint Forma mber - To Limestone	
46	47	Siltstone- Sand- Marl	Shells	Dark brown carbonaceous fine to medium sand, shells. Glauconitic	nche Point Formation- Gull ock Member - Tortachilla Limestone	
47	48	Sand- Limestone	Shells	Dark brown carbonaceous medium sand, shells Highly glauconitic limestone.	Gull Ila	T3 Equivalent

 $^{^{15}}$ Cb = confining bed Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

48	49	Silt	n/a	Dark brown/grey carbonaceous silt and fine to		
40	49	Siit	11/d	medium sand, shells		
			Sand,	Dark grey black fine sand,		
49	50	Silt	Shells	shells		
			Shells	Dark grey/black highly		
				carbonaceous fine silty sand,		
50	52	Sand	Silt, Shells	shells, some angular quartzite		
				chips		
-				Dark grey/black highly	S	
			Silt,	carbonaceous fine silty sand,	ů.	
52	57	Sand	Shells,	shells, some angular quartz	5	
	_		Gravel	chips and some rounded	3	T 0
				medium quartzite gravel	as	T3
				Dark grey/black highly	South Maslin Sands	Equivalent
	50	Canad		carbonaceous fine sand,	ŝ	
57	58	Sand	Shells	shells, some angular red	an	
				quartzite chips	ds	
				Dark grey/black highly		
				carbonaceous fine sand, with		
58	59	Sand	Gravel	some medium rounded		
				quartzite gravel and some		
				angular quartzite chips		
				Dark grey/black silty fine		
59	60	Sand	Silt/	sand, with some well rounded		
59	60	Sand	Gravel	medium to large quartzite		
				and sandstone gravel		
60	61	Sand	Silt	Black lignitic fine silty sand		
				Black lignite		
61	63	Lignite	n/a	(note: no acid reaction below		
				this depth)		
63	64	Clay	n/a	Stiff grey brown clay		
64	65	Clay	Sand	Light grey/brown sandy clay		
65	66	Clay	Sand	Grey stiff clay, fine to		01-
	(7	-		medium sand		Cb
66	67	Clay	n/a	Very stiff grey clay		
67	68	Clay	n/a	Very stiff light grey clay	Clin	
68	69	Clay	Lignite	Very stiff light grey clay,	Int	
69	71	-	-	some lignite	ton Formation	
09	/ 1	Lignite	n/a	Black lignite	 	
71	72	Clay	Lignite	Light grey very stiff clay, some lignite	on	
				Grey fine to medium sand	Ъ	
72	74	Sand	Clay,	and lignite, some stiff light	Ē	Minor T3
12	74	Sanu	Lignite	grey clay nodules	on	
			Silt/			
74	75	Clay	Lignite	Grey silty clay, some lignite		
			Silt/	<u> </u>		
75	76	Clay	Lignite	Grey silty clay and lignite		
			Clay/			Cb
76	77	Silt	Sand/	Black silty clay and sand		
	.,	Circ	Lignite			
			Silt/ Sand/	Black lignitic silty clay, some		
77	78	Clay	Lignite	fine sand		
1	1	1				1

78	80	Clay	Pyrite	Off white very stiff clay, some disseminated pyrite	Wea	
80	86	Clay	Pyrite	Off white very stiff clay (note: slight acid reaction below this depth)	Weathered Clinton Formation	СЬ
86	88	Clay	Pyrite	Off white very stiff clay, some disseminated pyrite, some light brown clay nodules, some lignite	Clinton	
88	89	Clay	Gravel/ Pyrite	Light grey clay with some disseminated pyrite, some fine rounded quartz gravel (note: strong acid reaction below this depth)		
89	90	Clay	Gravel/ Pyrite/ Silt	Light grey silty clay with some disseminated pyrite, some fine to medium rounded quartz gravel		
90	93	Clay	Silt/ Gravel/ Pyrite	Grey silty clay, some disseminated pyrite, some fine to medium rounded milky quartz gravel		
93	96	Clay	Silt/ Gravel/ Pyrite	Light grey and light orange silty clay, some disseminated pyrite, some fine to medium rounded quartz gravel	Weath	
96	98	Clay	Silt/ Pyrite	Light grey and orange silty clay, some disseminated pyrite	ered B	Cb
98	99	Clay	Silt/ Pyrite	Light grey and orange and light yellow silty clay, some disseminated pyrite	Weathered Bedrock	
99	100	Clay	Silt/ Gravel/ Pyrite	Light yellow and light orange and light grey silty clay, some disseminated pyrite and some fine to medium quartz gravel		
100	106	Clay	Silt/ Gravel/ Pyrite	Light grey and light orange and light yellow silty clay, some disseminated pyrite, some fine to medium angular chert, and quartz gravel		
106	111	Clay	Silt/ Gravel	Light grey silty clay with		
111	112	Silt	Gravel Gravel	angular fragments of quartz Grey silt and metasediment, some angular quartz and quartzite and feldspar gravel		
112	114	Silt	Gravel	Grey silt and metasediment, some angular fine to medium quartz gravel	Moc Be Sado	Cb
114	118	Gravel	n/a	Grey metasediment and angular medium quartz gravel	Moderately Weathered Bedrock - Saddleworth Fm.	Рс

APPENDIX 3

GEOLOGICAL LOG OF CORE – PN 102084

Tray	Depth Interval	Colour ¹⁶		Degree of Weathering	Fracture Spacing	Approx. Fracture	Fracture Zone ¹⁸	Fracture Aperture	Other features	Rock Type
	(m BGL)			17	(mm)	$\operatorname{Dip}(^{0})$	(m BGL)	(mm)		
		Dry	Wet						•	
1	118.2-119.3	N7	5B5/1 N4	MW	50-100	45-60	118.2-119.1	2-6	Broken, chlorite, talc, pyritised fracture surfaces. Meta-siltstone is sheared	DOLOSTONE & Meta- SILTSTONE
1	119.3-119.85	N7	5B5/1 N4	SW	100	45	-	0-2	Dolostone phase contains 'xenoliths'. Disseminated pyrite. Poorly developed foliation parallel to fracture planes	Meta-SILTSTONE Secondary DOLOSTONE
1	119.85-120.75	N7	5B5/1 N4	SW	100	45	-	0-2	Dolostone subsumed. Xenocrysts – N8/9 colour. Limonite weathered surfaces 45 ⁰ to fracture planes. Talc slickensides on some fractures planes.	Meta-SILTSTONE & 'MARBLE'
1	120.75-121.2	N7	5B5/1 N4	SW	100	45	-	0-2	Pyritised foliation becomes sub-vertical. Specks of carbonaceous material/biotite?	As above
1	121.2-123.55	N7	5B5/1 N4	SW	50-200	45	-	0-2	As above	As above
2	123.55-128.8	N7	5B5/1 N4	SW-Fr	100-500	60-75	-	0-2	As above. Fresher and more massive than preceding. Occasional dolomite veins; orthogonal dip to factures. Occasional limonite staining.	As above
3	128.8-134.2	N7	5B5/1 N4	SW-Fr	100-500	60-75	132.4	0-2	As above. Orthogonal infilled, healed veins of white, banded calcite	As above No core returned 132.7-132.8

¹⁶ Colour codes accords with Geological Society of America Munsell colour chart. N2 = greyish-black; N3 = dk grey; N4 = medium dark grey; N5 = medium grey; N6 = medium light grey; N7 = light grey; N8 = v. light grey; N9 = white; 5B 5/1 = medium blue-grey; 10R 6/6 = moderate reddish-brown.

¹⁷ Degree of weathering terms accords with AIMM. Fr = Fresh; SW = Slightly weathered. ¹⁸ i.e. discrete open fractures that might be groundwater transmissive.

Tray	Depth Interval (m BGL)	Colour		Degree of Weathering	Fracture Spacing (mm)	Approx. Fracture Dip (⁰)	Fracture Zone (m BGL)	Fracture Aperture (mm)	Other features	Rock Type
		Dry	Wet							
4	134.2-139.7	N7	5B5/1 N4	SW-Fr	100-400	50	138.2?	0-2	Copper mineralisation on fractures. 'shatter' zone 138.4-138.5	As above
5	139.7-145.05	N7	5B5/1 N4	SW	100-400	45-55	-	0-2	Slightly more iron-stained than preceding. Zones of marble veins < 300 mm with 'xenoliths'. Foliation dips steeper than fracture planes.	As above
6	145.05-150.4	N7	5B5/1 N4	SW	100-400	45-55	149.4; 150	0-2	As above	As above
7	150.4-156.4	N7	5B5/1 N4	SW	50-400	45-55	155.4-156.2	0-2; 2-6 @ 155.4- 156.25	Orthogonal fracture set at 70° dip starts. Pyrite-stained fracture planes; heavy iron- stained joints. 'Shatter' zones 155.4-156.0 & at 156.25 with 40° foliation dip	As above
8	156.4-162.2	N7	5B5/1 N4	SW-Fr	50-400	45-55	156.6; 158.0; 161.3	0-2	Slate intraclasts, brecciated/mylonitised structural fabric. Foliation @ 50° with conjugate fractures @ 30° Brittle fractures & core loss caused by barrel rotation?	As above. Below 157.5 becoming a MARBLE; below 161.5 changes to meta-SILTSTONE/MUDSTONE. No core returned 159.13-159.23
9	162.2-168.0	N7 & N3	5B5/1 N4	SW-Fr	100-400	55-60	166.8	0-2	Many calcite 'stringer' vein; conjugate set @ 80° . Occasional void spaces in veins & smaller 'xenoliths' than above. Foliation @ 35° heavily Pyritised meta-shale. Fissile zone 164.8-165.1 with heavy iron sulphide and calcite-staining on laminae. Ghost-veining below 167.3	meta-SILTSTONE/MUDSTONE & meta-SHALE No core returned 162.35-162.55
10	168.0-174.21	N7 & N3	5B5/1 N4	SW-Fr	100-400	55-60		0-2	As above. Veining prominent again below 168.2. Coarse-grained marble texture 169.75-169.85. More weathered 169.9- 171.2 – 'greenstone' like. 10R6/6 on fracture planes; calcite veins absent below 169.9. Core loss caused by barrel rotation?	As above. No core returned 169.9-170; 171- 171.1; & @ 174

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

AGT Report No. 2005/8

11	174.21-180.15	N7 &	5B5/1	SW-Fr	100-400	55-60		0-2	As per interval 169.9-171.2 but slightly	As above.
		N3	N4		reducing				less weathered. Below 175.6 becomes v.	
					to 20-				fissile with brittle cleavage @ 40° .	
					100				Fracture intervals reduce below 179.95.	
12	180.15-186.0	N7 &	5B5/1		20-600	55-60	180.15-	0-6?	As above 180.15-180.65 – v. broken with	As above.
	EOH	N3	N4				180.65?		2 conjugate joint sets. Iron-stained and	No core returned 183.55-186.0
									slightly more weathered 182.9-183.55	

APPENDIX 4

PHOTOGRAPHS OF CORE – PN 102084

Permit 102084, 'Tray 1', 118.2-123.55 m

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens - Stage 1

AGT Report No. 2005/8

Permit 102084, 'Tray 2', 123.55-128.8 m

Permit 102084, 'Tray 3', 128.8-134.2 m

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens - Stage 1

AGT Report No. 2005/8

Permit 102084, 'Tray 4', 134.2-139.7 m

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens - Stage 1

AGT Report No. 2005/8

Permit 102084, 'Tray 5', 139.7-145.05 m

AGT Report No. 2005/8

Permit 102084, 'Tray 6', 145.05-150.4 m

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens - Stage 1

AGT Report No. 2005/8

Permit 102084, 'Tray 7', 150.4-156.4 m

AGT Report No. 2005/8

Permit 102084, 'Tray 8', 156.4-162.2 m

AGT Report No. 2005/8

Permit 102084, 'Tray 9', 162.2-168.0 m

AGT Report No. 2005/8

Permit 102084, 'Tray 10', 168.0-174.21 m

Permit 102084, 'Tray 11', 174.21-180.15 m

Permit 102084, 'Tray 12', 180.15-186.0 m EOH

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens - Stage 1

AGT Report No. 2005/8

APPENDIX 5

WATER QUALITY RESULTS – PN 102084

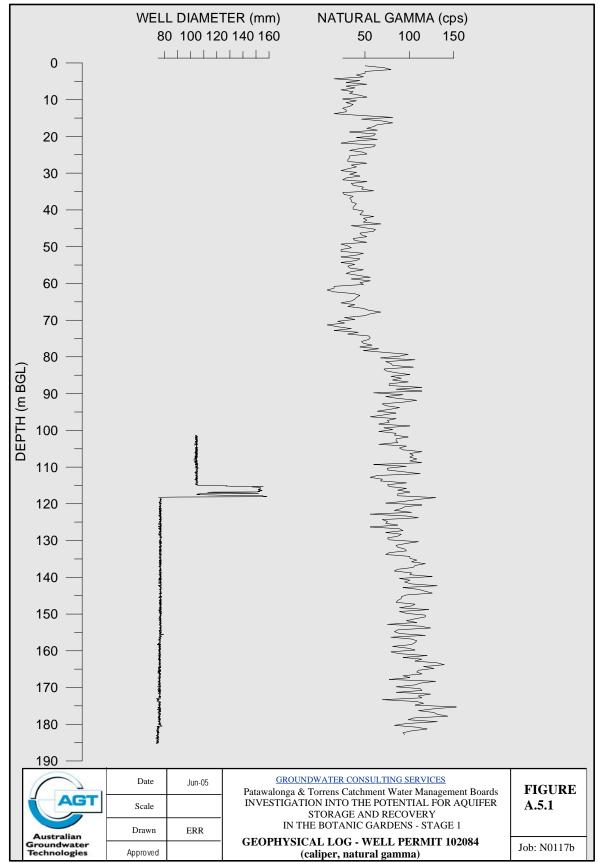
Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

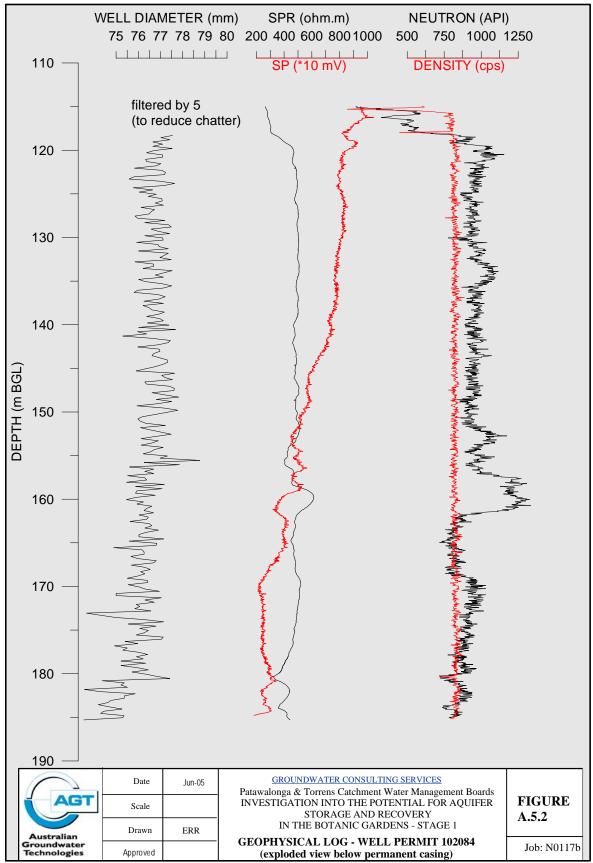
		GUIDELINE	BOTANICAL			
PARAMETER	UNITS	Freshwater Aquatic Ecosystems	Potable	GARDENS (PN 102084)		
General						
		10				
BOD	mg/L	10	-			
Chlorine	mg/L	0.003	5	4.070		
Conductivity	μS/cm			4,870		
DO	mg/L					
рН	pH Units	6.5-9	6.5-8.5	7.7		
Phenols	mg/L	0.05				
Redox Potential	mV					
Suspended Solids	mg/L	20	10			
Temperature	°C					
Dissolved Solids				2.000		
(by Calculation)	mg/L			2,900		
Total Dissolved Solids	mg/L			2,700		
(by EC)		15		2,700		
TOC) TELL	15	-			
Turbidity	NTU	20	5			
Major ions						
Calcium	mg/L			175		
Magnesium	mg/L			160		
Potassium	mg/L			28.8		
Sodium	mg/L		180	679		
Bicarbonate	mg/L			390		
Chloride	mg/L		250	1,330		
Fluoride	mg/L		1.5	0.29		
Sulphate	mg/L		500	314		
Nutrients						
Ammonia as N	mg/L	0.5		0.667		
Filt Reactive Phosphorus as P	mg/L mg/L			0.007		
Nitrate as N	mg/L			0.000		
Nitrite as N				< 0.005		
Nitrate + Nitrite as N	mg/L		11	< 0.005		
Nitrate + Nitrite as NO ₃	mg/L			< 0.02		
Phosphorus - Total as P	mg/L	0.5		0.155		
Silica - Reactive	mg/L			17		
Total Nitrogen	mg/L	5				
TKN as Nitrogen	mg/L mg/L			1.21		

		Guideline	BOTANICAL			
PARAMETER	UNITS	Freshwater Aquatic Ecosystems	Potable	GARDENS (PN 102084)		
Metals						
Aluminium - total	mg/L			0.624		
Antimony - total	mg/L	0.03	0.003			
Arsenic - total	mg/L	0.05	0.007	< 0.001		
Barium - total	mg/L		0.7			
Beryllium - total	mg/L	0.004				
Boron	mg/L		0.3	< 0.040		
Cadmium - total	mg/L	0.002	0.002	< 0.0005		
Chromium (VI)	mg/L	0.001	0.05			
Chromium - total	mg/L			< 0.003		
Cobalt - total	mg/L					
Copper - total	mg/L	0.01	2	0.003		
Iron - total	mg/L	1	0.3	2.07		
Lead - total	mg/L	0.005	0.01	0.0008		
Manganese - total	mg/L		0.5	0.0564		
Mercury - total	mg/L	0.0001	0.001			
Molybdenum - total	mg/L		0.05			
Nickel - total	mg/L	0.15	0.02	< 0.0005		
Selenium - total	mg/L	0.005	0.01			
Silver - total	mg/L	0.0001	0.1			
Thallium - total	mg/L	0.004				
Vanadium - total	mg/L					
Zinc - total	mg/L	0.05	3	0.006		
Derived Data						
Alkalinity as CaCO3	mg/L			320		
Ion Balance	%			1.68		
Langlier Index	-			0.84		
Sodium Adsorption Ratio	-			8.92		
Total Hardness as CaCo ₃	mg/L			1096		

APPENDIX 6

RECOVERY MEASUREMENTS – PN 102084


Austr	a	lia	n Grou	ndwater	Techno	logies	Job No:		0117d					
									Sheet	1	of	1		AGT
Recover	y a	fter	airlifting -	drawdown red	cording shee	t							Austr	alian
	1		J										Ground Techno	logies
Client:			T CWMB					Recorded	by:			IS		
Principal:								Checked:						
Project:			Parklands ASR				Measuring / Reference Point (RP):			Top of Headworks				
Location:			Botanical Garde	ns			Height of RP Above TOC:			~ 1.055				
Pumping Bo	ore:		BG1				Pump Make & Model:							
Observation Bore (if applicable):		n/a			Pump Inlet Setting:			Hose set to ~ 63 m						
Pre Test Sta	ndi	ng W	ater Level:	3.4					Filli	Filling 2,800L tank over 5 min				
Distance fro	om F	Pumpi	ing Bore (m):	n/a			, , , , , , , , , , , , , , , , , , ,			14t	14th September 2005 11.50 hrs			
			Elapsed Time	Water Level / Pressure (TO Headworks)	Corrected Water Level / Pressure (TOC)	Drawdown	Airlift Yield		Notes			рН	temp	EC
Min		Sec	(mins)	(mbRP / kPa)	(mbRP / kPa	(m)	(L/s)							
	:		0 (pre-test)				9.4	Removal o	f headwo	orks				
2	:	29	2.5	3.810	2.705	-0.695								
2	:	54	2.9	3.300	2.195	-1.205		SWL equip	ment ma	alfuncti	on			
6	:	53	6.9	4.580	3.475	0.075								
7	:	5	7.1	4.500	3.395	-0.005								
7	:	39	7.7	4.540	3.435	0.035								
9	:	20	9.3	4.535	3.430	0.030								
10	:	35	10.6	4.530	3.425	0.025								
11	:	50	11.8	4.525	3.420	0.020								
12	:	45	12.8	4.528	3.423	0.023								
14	:	0	14.0	4.527	3.422	0.022								
15	:	25	15.4	4.525	3.420	0.020								
16	:	0	16.0	4.524	3.419	0.019								
18	:	0	18.0	4.522	3.417	0.017								
20	:	0	20.0	4.520	3.415	0.015								
22	:	0	22.0	4.518	3.413	0.013								
25	:	0	25.0	4.514	3.409	0.009								
30	:	0	30.0	4.510	3.405	0.005								
35	:	0	35.0	4.510	3.405	0.005								
40	:	0	40.0	4.510	3.405	0.005								
45	:	0	45.0	4.508	3.403	0.003								
50	:	0	50.0	4.506	3.401	0.001								
55	:	0	55.0	4.505	3.400	0.000								
60	:	0	60.0	4.505	3.400	0.000								


APPENDIX 7

GEOPHYSICAL LOGS – PN 102084

APPENDIX 8

GLOSSARY

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1 $\,$

DIAMOND DRILLING AND CORE RECOVERY

INDUCTION LOG

A log recorded in uncased boreholes which involves the use of electromagnetic induction principles for the measurement of formation conductivity or resistivity. The induction logging tool has advantages for use in nonconductive borehole fluids (air. oil gas) where other electrical resistivity logging tools cannot be easily used or should not be used. The induction log is widely used in electrically conductive drilling muds where it works well provided the formations are not too resistive and borehole effects are known and not too great (i.e., mud not too saline and hole diameter not too large).

Practical induction sondes include an array of several transmitter and receiver coils designed to provide focusing and deep investigation and to minimize borehole and adjacent-formation effects. A high-frequency alternating current, constant in magnitude, is passed through the transmitter coils. The resulting alternating magnetic field induces currents in the formation which flow in circular ground-loop paths coaxial with the sonde. Those ground-loop currents generate their own magnetic fields which induce in the receiver coils signals which at low conductivities are essentially proportional to formation conductivity. At high conductivities, the reading may be affected by skin effect. Receiver-coil signals produced by direct coupling with the transmitter coil are balanced out by the measuring circuits.

Induction tools can be run separately or can be combined with other devices to run combination services. Integrated tools, combining in one tool the devices necessary to perform different resistivity-measuring operations, are commonly used in the well-logging industry. Examples of such tools are the induction device with a deep depth of investigation in combination with: another induction device having a shallower depth of investigation, invaded zone investigative devices (e.g., short normal device, short laterolog or guard log, or Spherically Focused Logging device), long lateral, and SP.

NEUTRON LOG

A log of a response primarily related to hydrogen concentration but also affected by mineralogy and borehole effects. The neutron log does not distinguish between the hydrogen in the pore fluids (i.e., water, oil, gas), in water of crystallization, or water bound to solid surfaces. In clean oil-filled or water-filled formations the apparent porosity reading ot the neutron log reflects the amount of liquid-filled pore volume. Used with other porosity information, the neutron log is useful to ascertain the presence of gas and determine mineralogy and shaliness.

Investigation into the potential for Aquifer Storage and Recovery in the Botanic Gardens – Stage 1

The tool contains a continuously emitting neutron source and either a neutron- (n-n tool) or a gamma-ray detector (n-g tool). High energy neutrons from the source are slowed down by collisions with atomic nuclei. The hydrogen atoms are by far the most effective in the slowing down process because their mass is nearly equal to that of the neutron. Thus, the distribution of the neutrons at the time of detection is primarily determined by the hydrogen concentration. Depending on the tool type, detection is made of either (1) thermal neutrons; (2) gamma rays, generated when thermal neutrons are captured by thermal-neutron absorbers in the formation (primarily chlorine); or (3) epithermal neutrons (neutrons having energies higher than thermal).

Neutron curves are scaled in API units or in terms of apparent porosity. The neutron log can be recorded in open or cased liquid-filled well bores. There is a maximum hole size limitation in empty holes for running tools in which the detector does not contact the formation wall. See also sidewall neutron log and compensated neutron log.